In this work, we create artistic closed loop curves that trace out images and 3D shapes, which we then hide in musical audio as a form of steganography. We use traveling salesperson art to create artistic plane loops to trace out image contours, and we use Hamiltonian cycles on triangle meshes to create artistic space loops that fill out 3D surfaces. Our embedding scheme is designed to faithfully preserve the geometry of these loops after lossy compression, while keeping their presence undetectable to the audio listener. To accomplish this, we hide each dimension of the curve in a different frequency, and we perturb a sliding window sum of the magnitude of that frequency to best match the target curve at that dimension, while hiding scale information in that frequency's phase. In the process, we exploit geometric properties of the curves to help to more effectively hide and recover them. Our scheme is simple and encoding happens efficiently with a nonnegative least squares framework, while decoding is trivial. We validate our technique quantitatively on large datasets of images and audio, and we show results of a crowd sourced listening test that validate that the hidden information is indeed unobtrusive.


翻译:在这项工作中,我们创建了艺术封闭循环曲线,以追踪图像和3D形状,然后将其隐藏在音乐音频中,作为摄像学的一种形式。我们使用巡回销售员艺术,以创建艺术平流环以追踪图像轮廓,我们在三角间环状上使用汉密尔顿周期来创建艺术空间环状,以填充3D表面。我们的嵌入计划旨在忠实保存这些环状的几何结构,在丢失压缩后,同时将其存在不为听音者所察觉。要做到这一点,我们以不同频率隐藏曲线的每个维度,我们用这种频度的滑动窗口总和该频度最符合目标曲线的尺寸,同时在三角间段阶段隐藏比例信息。在这个过程中,我们利用曲线的几何特性来帮助更有效地隐藏和回收3D表面。我们的计划很简单,并且编译过程效率很高,同时不为听音频和音频大数据设置的解码框架。我们验证了我们的技术,在数量上对图像和音频的大小数据设置进行定量验证,我们展示了隐藏源测试的结果。

0
下载
关闭预览

相关内容

《计算机信息》杂志发表高质量的论文,扩大了运筹学和计算的范围,寻求有关理论、方法、实验、系统和应用方面的原创研究论文、新颖的调查和教程论文,以及描述新的和有用的软件工具的论文。官网链接:https://pubsonline.informs.org/journal/ijoc
【2023新书】使用Python进行统计和数据可视化,554页pdf
专知会员服务
126+阅读 · 2023年1月29日
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
专知会员服务
17+阅读 · 2020年9月6日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
GNN 新基准!Long Range Graph Benchmark
图与推荐
0+阅读 · 2022年10月18日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
ICLR2019最佳论文出炉
专知
12+阅读 · 2019年5月6日
19篇ICML2019论文摘录选读!
专知
28+阅读 · 2019年4月28日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
The Multiscale Surface Vision Transformer
Arxiv
0+阅读 · 2023年3月21日
Arxiv
0+阅读 · 2023年3月21日
Arxiv
10+阅读 · 2021年11月3日
VIP会员
相关资讯
GNN 新基准!Long Range Graph Benchmark
图与推荐
0+阅读 · 2022年10月18日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
ICLR2019最佳论文出炉
专知
12+阅读 · 2019年5月6日
19篇ICML2019论文摘录选读!
专知
28+阅读 · 2019年4月28日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员