We frequently encounter multiple series that are temporally correlated in our surroundings, such as EEG data to examine alterations in brain activity or sensors to monitor body movements. Segmentation of multivariate time series data is a technique for identifying meaningful patterns or changes in the time series that can signal a shift in the system's behavior. However, most segmentation algorithms have been designed primarily for univariate time series, and their performance on multivariate data remains largely unsatisfactory, making this a challenging problem. In this work, we introduce a novel approach for multivariate time series segmentation using conditional independence (CI) graphs. CI graphs are probabilistic graphical models that represents the partial correlations between the nodes. We propose a domain agnostic multivariate segmentation framework `$\texttt{tGLAD}$' which draws a parallel between the CI graph nodes and the variables of the time series. Consider applying a graph recovery model $\texttt{uGLAD}$ to a short interval of the time series, it will result in a CI graph that shows partial correlations among the variables. We extend this idea to the entire time series by utilizing a sliding window to create a batch of time intervals and then run a single $\texttt{uGLAD}$ model in multitask learning mode to recover all the CI graphs simultaneously. As a result, we obtain a corresponding temporal CI graphs representation. We then designed a first-order and second-order based trajectory tracking algorithms to study the evolution of these graphs across distinct intervals. Finally, an `Allocation' algorithm is used to determine a suitable segmentation of the temporal graph sequence. $\texttt{tGLAD}$ provides a competitive time complexity of $O(N)$ for settings where number of variables $D<<N$. We demonstrate successful empirical results on a Physical Activity Monitoring data.
翻译:我们经常在我们的周围遇到多个时间相关的数据序列,例如 EEG 数据用于检测脑活动的变化或传感器用于监测身体运动。多元时间序列数据分割是一种识别时间序列中有意义的模式或变化的技术,可以标志系统行为的变化。然而,大多数分割算法主要设计用于单元时间序列,它们在多元数据上的性能仍然不尽人意,这是一个具有挑战性的问题。在这项工作中,我们引入了一种基于条件独立性(CI)图的多元时间序列分割新方法。CI 图是表示节点之间的偏相关性的概率图模型。我们提出了一个领域无关的多元分割框架 `$\texttt{tGLAD}$',它将 CI 图节点与时间序列的变量进行了类比。考虑将一个图恢复模型 $\texttt{uGLAD}$ 应用于时间序列的一个短区间,它将导致一个显示变量之间偏相关性的 CI 图。我们通过使用滑动窗口创建一批时间区间,然后在多任务学习模式下运行一个 $\texttt{uGLAD}$ 模型,同时恢复所有 CI 图,从而将这个想法扩展到整个时间序列。因此,我们获得了相应的时间 CI 图表示。然后,我们设计了一些基于一阶和二阶的轨迹跟踪算法,以研究这些图在不同时间间隔下的演化。最后,使用"分配"算法确定了时间图序列的适当分割。$\texttt{tGLAD}$ 在变量数 $D<<N$ 的情况下提供了 $O(N)$ 的竞争时间复杂度。我们在一个物理活动监测数据集上展示了成功的实证结果。