Modern depth sensors such as LiDAR operate by sweeping laser-beams across the scene, resulting in a point cloud with notable 1D curve-like structures. In this work, we introduce a new point cloud processing scheme and backbone, called CurveCloudNet, which takes advantage of the curve-like structure inherent to these sensors. While existing backbones discard the rich 1D traversal patterns and rely on Euclidean operations, CurveCloudNet parameterizes the point cloud as a collection of polylines (dubbed a "curve cloud"), establishing a local surface-aware ordering on the points. Our method applies curve-specific operations to process the curve cloud, including a symmetric 1D convolution, a ball grouping for merging points along curves, and an efficient 1D farthest point sampling algorithm on curves. By combining these curve operations with existing point-based operations, CurveCloudNet is an efficient, scalable, and accurate backbone with low GPU memory requirements. Evaluations on the ShapeNet, Kortx, Audi Driving, and nuScenes datasets demonstrate that CurveCloudNet outperforms both point-based and sparse-voxel backbones in various segmentation settings, notably scaling better to large scenes than point-based alternatives while exhibiting better single object performance than sparse-voxel alternatives.
翻译:现代深度传感器(如LiDAR)通过扫描激光束跨越场景,生成带有明显1D曲线结构的点云数据。本研究提出了一种新的点云处理方案和骨干网络——CurveCloudNet,它利用了这些传感器固有的曲线结构特征。现有的骨干网络都忽略了这些丰富的1D遍历模式,依靠欧几里得计算进行处理。CurveCloudNet将点云参数化为一系列折线(称为“曲线云”),在点上建立了本地面感知的排序。我们的方法对曲线云应用了曲线特有的操作,包括对称1D卷积、用于将点沿着曲线合并的球分组,以及在曲线上进行高效的1D最远点采样算法。通过将这些曲线操作与现有的基于点的操作相结合,CurveCloudNet成为了一个具有低GPU内存需求的高效、可扩展和准确的骨干网络。在ShapeNet、Kortx、Audi Driving和nuScenes数据集上的评估表明,CurveCloudNet在各种细分模式下都优于点云和稀疏体素骨干,在处理大型场景时表现更好,同时表现出比稀疏体素骨干更好的单个物体性能。