Generating new fonts is a time-consuming and labor-intensive task, especially in a language with a huge amount of characters like Chinese. Various deep learning models have demonstrated the ability to efficiently generate new fonts with a few reference characters of that style, but few models support cross-lingual font generation. This paper presents GAS-NeXt, a novel few-shot cross-lingual font generator based on AGIS-Net and Font Translator GAN, and improve the performance metrics such as Fr\'echet Inception Distance (FID), Structural Similarity Index Measure(SSIM), and Pixel-level Accuracy (pix-acc). Our approaches include replacing the original encoder and decoder with the idea of layer attention and context-aware attention from Font Translator GAN, while utilizing the shape, texture, and local discriminators of AGIS-Net. In our experiment on English-to-Chinese font translation, we observed better results in fonts with distinct local features than conventional Chinese fonts compared to results obtained from Font Translator GAN. We also validate our method on multiple languages and datasets.
翻译:生成新字体是一项耗时费力且耗费大量人力的任务, 特别是使用像中文这样的大量字符的语言。 各种深层学习模型已经证明有能力以这种风格的几个参考字符高效生成新字体, 但很少有模型支持跨语言字体生成。 本文展示了基于 AGIS- Net 和 Font 笔译GAN 的新型微小的跨语言字体生成器GAS- NeXt。 并改进了诸如 Fr\' echet Inception( FID)、 结构相似指数测量(SSIM) 和 Pixel 级别精密度( Pix- acc) 等的性能度量度。 我们的方法包括替换原始编码和解码器, 替换字体翻译GAN 的分层关注和背景觉察注意理念, 同时使用 AGIS- Net 的形状、 文本和本地分析器。 在我们的英语到中文的字体翻译实验中, 我们观察到了比传统中文字体翻译GAN 的结果更好的地方字体效果。 我们还验证了我们用多种语言和数据设置的方法。