A new nonparametric estimator for Toeplitz covariance matrices is proposed. This estimator is based on a data transformation that translates the problem of Toeplitz covariance matrix estimation to the problem of mean estimation in an approximate Gaussian regression. The resulting Toeplitz covariance matrix estimator is positive definite by construction, fully data-driven and computationally very fast. Moreover, this estimator is shown to be minimax optimal under the spectral norm for a large class of Toeplitz matrices. These results are readily extended to estimation of inverses of Toeplitz covariance matrices. Also, an alternative version of the Whittle likelihood for the spectral density based on the Discrete Cosine Transform (DCT) is proposed. The method is implemented in the R package vstdct that accompanies the paper.
翻译:本文提出了一种新的 Toeplitz 协方差矩阵的非参数估计器。该估计器基于一种数据变换,将 Toeplitz 协方差矩阵估计问题转化为近似高斯回归中的均值估计问题。由此得出的 Toeplitz 协方差矩阵估计器是通过构造得到的正定的,完全由数据驱动,并且计算非常快速。此外,该估计器针对一类大型 Toeplitz 矩阵在谱范数下被证明是最小化风险的。这些结果可以轻松地推广到 Toeplitz 协方差矩阵求逆的估计中。同时,本文还提出了一种基于离散余弦变换(DCT)的谱密度的 Whittle 似然函数的替代版本。该方法已实现在附随于本文的 R 包 vstdct 中。