We introduce a new class $\mathcal{G}$ of bipartite plane graphs and prove that each graph in $\mathcal{G}$ admits a proper square contact representation. A contact between two squares is \emph{proper} if they intersect in a line segment of positive length. The class $\mathcal{G}$ is the family of quadrangulations obtained from the 4-cycle $C_4$ by successively inserting a single vertex or a 4-cycle of vertices into a face. For every graph $G\in \mathcal{G}$, we construct a proper square contact representation. The key parameter of the recursive construction is the aspect ratio of the rectangle bounded by the four outer squares. We show that this aspect ratio may continuously vary in an interval $I_G$. The interval $I_G$ cannot be replaced by a fixed aspect ratio, however, as we show, the feasible interval $I_G$ may be an arbitrarily small neighborhood of any positive real.
翻译:我们引入了一个新的等级$mathcal{G}$, 双方平面图中$\mathcal{G}$, 并证明每张图表中$\mathcal{G} $允许适当的平方接触代表。 两个平方之间的接触是\ emph{proper}, 如果它们在正长度的线段中交叉。 $\ mathcal{G} $是连续插入一个单一的顶端或4周期的顶端对面图中从4美元中获取的四重对称的组合。 对于每张图形$G\ in\ mathcal{G}, 我们构建一个适当的平方接触代表。 递归性构造的关键参数是四个外方平面的矩形的方位比。 我们显示, 该方位比例可能会在一个间隔里持续变化 $I_G$ 。 美元 的间距不能被固定的方位比例取代。 但是, 正如我们所显示, 可行的 $_G$ 可能是任何真实的任意的小区块。