Score-based methods represented as stochastic differential equations on a continuous time domain have recently proven successful as a non-adversarial generative model. Training such models relies on denoising score matching, which can be seen as multi-scale denoising autoencoders. Here, we augment the denoising score-matching framework to enable representation learning without any supervised signal. GANs and VAEs learn representations by directly transforming latent codes to data samples. In contrast, the introduced diffusion based representation learning relies on a new formulation of the denoising score-matching objective and thus encodes information needed for denoising. We illustrate how this difference allows for manual control of the level of details encoded in the representation. Using the same approach, we propose to learn an infinite-dimensional latent code which achieves improvements of state-of-the-art models on semi-supervised image classification. As a side contribution, we show how adversarial training in score-based models can improve sample quality and improve sampling speed using a new approximation of the prior at smaller noise scales.
翻译:连续时间域的基于记分法作为随机差异方程式代表的基于连续时间域的计分方法,最近证明作为一种非对抗性的基因模型是成功的。培训这类模型依赖于取消评分匹配,这可以被看作是多尺度的取消自动对等器。在这里,我们增加取消评分匹配框架,以便能够在没有受到监督的信号的情况下进行代表性学习。GANs和VAEs通过直接将潜在代码转换为数据样本来学习表现方式。相反,采用基于评分的普及学习方法,依赖于对分比对比目标的新配方,从而对消音所需的信息进行编码。我们说明了这种差异如何允许人工控制代号中编码的细节水平。我们提议采用同样的方法,学习一个无限的、能够改进半受监督图像分类方面最新模型的无边际潜在代码。作为侧面贡献,我们展示了基于评分模型的对抗性培训如何能够提高抽样质量,并使用以前在较小的噪音尺度上的新近近度提高抽样速度。