Holonomic functions play an essential role in Computer Algebra since they allow the application of many symbolic algorithms. Among all algorithmic attempts to find formulas for power series, the holonomic property remains the most important requirement to be satisfied by the function under consideration. The targeted functions mainly summarize that of meromorphic functions. However, expressions like $\tan(z)$, $z/(\exp(z)-1)$, $\sec(z)$, etc. are not holonomic, therefore their power series are inaccessible by non-pattern matching implementations like the current Maple \texttt{convert/FormalPowerSeries}. From the mathematical dictionaries, one can observe that most of the known closed-form formulas of non-holonomic power series involve another sequence whose evaluation depends on some finite summations. In the case of $\tan(z)$ and $\sec(z)$ the corresponding sequences are the Bernoulli and Euler numbers, respectively. Thus providing a symbolic approach that yields complete representations when linear summations for power series coefficients of non-holonomic functions appear, might be seen as a step forward towards the representation of non-holonomic power series. By adapting the method of ansatz with undetermined coefficients, we build an algorithm that computes least-order quadratic differential equations with polynomial coefficients for a large class of non-holonomic functions. A differential equation resulting from this procedure is converted into a recurrence equation by applying the Cauchy product formula and rewriting powers into polynomials and derivatives into shifts. Finally, using enough initial values we are able to give normal form representations to characterize several non-holonomic power series and prove non-trivial identities. We discuss this algorithm and its implementation for Maple 2022.


翻译:全息函数在计算机代数中扮演着不可或缺的角色, 因为它们允许应用许多象征性算法 。 在寻找电源序列公式的所有算法尝试中, holonomic 属性仍然是审议中的函数所要满足的最重要要求。 目标函数主要概括了 molortic 函数。 然而, $tan( z) 、 $z/ (\ ex( z)-1) 美元、 $\\ sec( z) 等表达方式不是 Holonomic, 因此它们的电源序列无法被非模式的变数匹配执行( 如当前 Maple \ tett{ conver/ FormalpoolateSeries ) 。 从数学字典中可以观察到, 大多数已知的非超额公式公式公式的函数包含另一个序列, 其评价取决于一定的比值 。 在 $\ z ( ) 和 $\\\ 20 ( z) 中, 对应的序列是 足够多的变数和 Eul 数字。 因此, 提供了一种完整的表达式方法, 当我们用一个变数序列的直线性变数的变数的变数函数的变数函数的变数, 。

0
下载
关闭预览

相关内容

专知会员服务
124+阅读 · 2020年9月8日
【DeepMind】强化学习教程,83页ppt
专知会员服务
154+阅读 · 2020年8月7日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
53+阅读 · 2019年9月29日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【推荐】GAN架构入门综述(资源汇总)
机器学习研究会
10+阅读 · 2017年9月3日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年11月16日
Arxiv
0+阅读 · 2021年11月14日
Financial Time Series Representation Learning
Arxiv
10+阅读 · 2020年3月27日
VIP会员
相关资讯
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【推荐】GAN架构入门综述(资源汇总)
机器学习研究会
10+阅读 · 2017年9月3日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员