Objective: Electrocardiogram (ECG) signals commonly suffer noise interference, such as baseline wander. High-quality and high-fidelity reconstruction of the ECG signals is of great significance to diagnosing cardiovascular diseases. Therefore, this paper proposes a novel ECG baseline wander and noise removal technology. Methods: We extended the diffusion model in a conditional manner that was specific to the ECG signals, namely the Deep Score-Based Diffusion model for Electrocardiogram baseline wander and noise removal (DeScoD-ECG). Moreover, we deployed a multi-shots averaging strategy that improved signal reconstructions. We conducted the experiments on the QT Database and the MIT-BIH Noise Stress Test Database to verify the feasibility of the proposed method. Baseline methods are adopted for comparison, including traditional digital filter-based and deep learning-based methods. Results: The quantities evaluation results show that the proposed method obtained outstanding performance on four distance-based similarity metrics with at least 20\% overall improvement compared with the best baseline method. Conclusion: This paper demonstrates the state-of-the-art performance of the DeScoD-ECG for ECG baseline wander and noise removal, which has better approximations of the true data distribution and higher stability under extreme noise corruptions. Significance: This study is one of the first to extend the conditional diffusion-based generative model for ECG noise removal, and the DeScoD-ECG has the potential to be widely used in biomedical applications.


翻译:目标: 心电图信号通常受到噪音干扰,例如基线漫游; 高品质和高忠诚度的ECG信号重建对诊断心血管疾病具有重大意义。 因此,本文件提出一个新的ECG基线漫游和噪音清除技术。 方法:我们以ECG信号特有的有条件方式扩展扩散模型,即深计分的电心电图基线漫游和噪音清除扩散模型(DescoD-ECG)。此外,我们广泛采用多发平均战略,改进信号重建。我们在QT数据库和MIT-BIH噪音压力测试数据库上进行了实验,以核实拟议方法的可行性。采用了基准方法进行比较,包括传统的基于数字过滤和深层次学习的方法。结果:数量评估结果显示,拟议方法在四个基于距离的电心电图基线移动和噪音清除基线模型上取得了杰出的成绩,与最佳基线方法相比,至少20 ⁇ 总体改进。结论:本文展示了DEScoD-BIE压力测试数据库和MERG数据库的状态表现,在ECO-D-BRMMMBS中,首次使用最高级的流流流流传数据,在ECG数据库中,用于最高级的流流流传。

0
下载
关闭预览

相关内容

专知会员服务
42+阅读 · 2020年12月18日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Call for Nominations: 2022 Multimedia Prize Paper Award
CCF多媒体专委会
0+阅读 · 2022年2月12日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2023年3月13日
Arxiv
44+阅读 · 2022年9月6日
Arxiv
12+阅读 · 2020年8月3日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Call for Nominations: 2022 Multimedia Prize Paper Award
CCF多媒体专委会
0+阅读 · 2022年2月12日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员