We study a fundamental transfer learning process from source to target linear regression tasks, including overparameterized settings where there are more learned parameters than data samples. The target task learning is addressed by using its training data together with the parameters previously computed for the source task. We define a transfer learning approach to the target task as a linear regression optimization with a regularization on the distance between the to-be-learned target parameters and the already-learned source parameters. We analytically characterize the generalization performance of our transfer learning approach and demonstrate its ability to resolve the peak in generalization errors in double descent phenomena of the minimum $\ell_2$-norm solution to linear regression. Moreover, we show that for sufficiently related tasks, the optimally tuned transfer learning approach can outperform the optimally tuned ridge regression method, even when the true parameter vector conforms to an isotropic Gaussian prior distribution. Namely, we demonstrate that transfer learning can beat the minimum mean square error (MMSE) solution of the independent target task. Our results emphasize the ability of transfer learning to extend the solution space to the target task and, by that, to have an improved MMSE solution. We formulate the linear MMSE solution to our transfer learning setting and point out its key differences from the common design philosophy to transfer learning.
翻译:我们从源到线性回归任务的基本转移学习过程,包括使用比数据样本更具学习程度的参数的超度分解设置。目标任务学习是通过使用其培训数据和先前为源任务计算的参数来解决的。我们将目标任务转移学习方法定义为线性回归优化,将目标目标任务转移学习方法定义为线性回归优化,将即将获得的目标参数与已经获得的来源参数之间的距离正规化。我们分析地描述我们转移学习方法的一般性表现,并表明它有能力解决双向下降现象中普遍下降的峰值错误,即最小值为$_2美元-诺姆解决方案与线性回归有关的双向下降现象中的峰值。此外,我们显示,对于充分相关的任务,最佳调整的转移学习方法可以超越最佳调整的脊脊回归方法,即使真正的参数矢量与先前分布的偏偏移高值相一致。也就是说,我们证明转移学习可战胜独立目标任务中最小值的平方差解决方案。我们的结果强调,将解决方案的解决方案的转移能力扩大到目标性空间到目标性任务,并且通过这一学习改进的线性MSE解决方案。