Weight sharing has become a de facto standard in neural architecture search because it enables the search to be done on commodity hardware. However, recent works have empirically shown a ranking disorder between the performance of stand-alone architectures and that of the corresponding shared-weight networks. This violates the main assumption of weight-sharing NAS algorithms, thus limiting their effectiveness. We tackle this issue by proposing a regularization term that aims to maximize the correlation between the performance rankings of the shared-weight network and that of the standalone architectures using a small set of landmark architectures. We incorporate our regularization term into three different NAS algorithms and show that it consistently improves performance across algorithms, search-spaces, and tasks.
翻译:在神经结构搜索中,体重共享已成为事实上的标准,因为它使得能够对商品硬件进行搜索。然而,最近的工程从经验上表明,独立建筑和相应的共享重量网络的性能存在等级失调,这违反了权重共享NAS算法的主要假设,从而限制了其有效性。我们通过提出一个正规化术语来解决这一问题,该术语旨在最大限度地提高共享重量网络和独立建筑的性能等级之间的关联性,并使用一小套标志性架构。我们将我们的正规化术语纳入三种不同的NAS算法,并表明它始终在改善各种算法、搜索空间和任务之间的性能。