Affordance refers to the perception of possible actions allowed by an object. Despite its relevance to human-computer interaction, no existing theory explains the mechanisms that underpin affordance-formation; that is, how affordances are discovered and adapted via interaction. We propose an integrative theory of affordance-formation based on the theory of reinforcement learning in cognitive sciences. The key assumption is that users learn to associate promising motor actions to percepts via experience when reinforcement signals (success/failure) are present. They also learn to categorize actions (e.g., "rotating" a dial), giving them the ability to name and reason about affordance. Upon encountering novel widgets, their ability to generalize these actions determines their ability to perceive affordances. We implement this theory in a virtual robot model, which demonstrates human-like adaptation of affordance in interactive widgets tasks. While its predictions align with trends in human data, humans are able to adapt affordances faster, suggesting the existence of additional mechanisms.
翻译:宽度是指对物体允许的可能行动的感知。 尽管它与人体-计算机互动有关, 现有的理论没有解释支撑负担能力结构的机制; 也就是说, 如何发现和通过互动调整支付能力。 我们根据认知科学中强化学习理论提出一个综合负担能力结构理论。 关键假设是, 当增强信号( 成功/失败) 出现时, 用户学会通过经验将有希望的机动动作结合到感知中。 他们还学会对行动进行分类( 比如“ 旋转” 拨号), 赋予它们命名和负担能力。 遇到小部件时, 他们一般化这些行动的能力决定了他们感知负担能力。 我们在虚拟机器人模型中应用这一理论, 这表明在交互式部件任务中, 人性地调整支付能力。 虽然其预测与人类数据的趋势一致, 人类能够更快地适应负担能力, 并暗示存在额外机制 。