We address the problem of multi-group mean estimation, which seeks to allocate a finite sampling budget across multiple groups to obtain uniformly accurate estimates of their means. Unlike classical multi-armed bandits, whose objective is to minimize regret by identifying and exploiting the best arm, the optimal allocation in this setting requires sampling every group on the order of $\Theta(T)$ times. This fundamental distinction makes exploration-free algorithms both natural and effective. Our work makes three contributions. First, we strengthen the existing results on subgaussian variance concentration using the Hanson-Wright inequality and identify a class of strictly subgaussian distributions that yield sharper guarantees. Second, we design exploration-free non-adaptive and adaptive algorithms, and we establish tighter regret bounds than the existing results. Third, we extend the framework to contextual bandit settings, an underexplored direction, and propose algorithms that leverage side information with provable guarantees. Overall, these results position exploration-free allocation as a principled and efficient approach to multi-group mean estimation, with potential applications in experimental design, personalization, and other domains requiring accurate multi-group inference.
翻译:暂无翻译