We propose a gradient-based framework for optimizing parametric nonlinear Gaussian channels via mutual information maximization. Leveraging the score-to-Fisher bridge (SFB) methodology, we derive a computationally tractable formula for the information gradient that is the gradient of mutual information with respect to the parameters of the nonlinear front-end. Our formula expresses this gradient in terms of two key components: the score function of the marginal output distribution, which can be learned via denoising score matching (DSM), and the Jacobian of the front-end function, which is handled efficiently using the vector-Jacobian product (VJP) within automatic differentiation frameworks. This enables practical parameter optimization through gradient ascent. Furthermore, we extend this framework to task-oriented scenarios, deriving gradients for both task-specific mutual information, where a task variable depends on the channel input, and the information bottleneck (IB) objective. A key advantage of our approach is that it facilitates end-to-end optimization of the nonlinear front-end without requiring explicit computation on the output distribution. Extensive experimental validation confirms the correctness of our information gradient formula against analytical solutions and demonstrates its effectiveness in optimizing both linear and nonlinear channels toward their objectives.


翻译:我们提出了一种基于梯度的框架,用于通过互信息最大化来优化参数化非线性高斯信道。利用分数-费希尔桥(SFB)方法,我们推导出了一个计算上易于处理的信息梯度公式,该公式是互信息相对于非线性前端参数的梯度。我们的公式将此梯度表示为两个关键分量的函数:边缘输出分布的分数函数(可通过去噪分数匹配学习)和前端函数的雅可比矩阵(在自动微分框架中通过向量-雅可比积高效处理)。这使得通过梯度上升进行实际参数优化成为可能。此外,我们将此框架扩展到面向任务的场景,推导出了任务特定互信息(其中任务变量依赖于信道输入)和信息瓶颈(IB)目标的梯度。我们方法的一个关键优势在于,它促进了非线性前端的端到端优化,而无需对输出分布进行显式计算。大量的实验验证证实了我们的信息梯度公式相对于解析解的正确性,并证明了其在优化线性和非线性信道以实现其目标方面的有效性。

0
下载
关闭预览

相关内容

《计算机信息》杂志发表高质量的论文,扩大了运筹学和计算的范围,寻求有关理论、方法、实验、系统和应用方面的原创研究论文、新颖的调查和教程论文,以及描述新的和有用的软件工具的论文。官网链接:https://pubsonline.informs.org/journal/ijoc
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员