Dynamic graphs refer to graphs whose structure dynamically changes over time. Despite the benefits of learning vertex representations (i.e., embeddings) for dynamic graphs, existing works merely view a dynamic graph as a sequence of changes within the vertex connections, neglecting the crucial asynchronous nature of such dynamics where the evolution of each local structure starts at different times and lasts for various durations. To maintain asynchronous structural evolutions within the graph, we innovatively formulate dynamic graphs as temporal edge sequences associated with joining time of vertices (ToV) and timespan of edges (ToE). Then, a time-aware Transformer is proposed to embed vertices' dynamic connections and ToEs into the learned vertex representations. Meanwhile, we treat each edge sequence as a whole and embed its ToV of the first vertex to further encode the time-sensitive information. Extensive evaluations on several datasets show that our approach outperforms the state-of-the-art in a wide range of graph mining tasks. At the same time, it is very efficient and scalable for embedding large-scale dynamic graphs.
翻译:动态图形是指结构随时间动态变化的图形。 尽管学习动态图形的顶端表达式( 嵌入 ) 的好处是学习动态图形的顶端表达式( 即嵌入 ), 现有的工作只是将一个动态图形视为顶端连接中的变化序列, 忽略了这种动态的关键的非同步性质, 在这种动态中, 每个本地结构的演变在不同的时间开始, 并且持续不同时期。 为了在图形中保持不同步的结构演变, 我们创新地将动态图形设计成与垂直( ToV) 和边缘时间间隔( ToE) 相连接的时间相连接相关的时间边缘序列。 然后, 提议一个有时间觉的变换器将顶端的动态连接和 ToE 嵌入学习的顶端表达式表达式中。 同时, 我们将每个边缘序列作为一个整体处理, 并嵌入第一个顶端的托维以进一步编码时间敏感信息。 对几个数据集进行的广泛评价显示, 我们的方法在广泛的图形开采任务范围内的状态- 。 同时, 它非常高效和可缩放的图形 。</s>