Dynamic graphs refer to graphs whose structure dynamically changes over time. Despite the benefits of learning vertex representations (i.e., embeddings) for dynamic graphs, existing works merely view a dynamic graph as a sequence of changes within the vertex connections, neglecting the crucial asynchronous nature of such dynamics where the evolution of each local structure starts at different times and lasts for various durations. To maintain asynchronous structural evolutions within the graph, we innovatively formulate dynamic graphs as temporal edge sequences associated with joining time of vertices (ToV) and timespan of edges (ToE). Then, a time-aware Transformer is proposed to embed vertices' dynamic connections and ToEs into the learned vertex representations. Meanwhile, we treat each edge sequence as a whole and embed its ToV of the first vertex to further encode the time-sensitive information. Extensive evaluations on several datasets show that our approach outperforms the state-of-the-art in a wide range of graph mining tasks. At the same time, it is very efficient and scalable for embedding large-scale dynamic graphs.


翻译:动态图形是指结构随时间动态变化的图形。 尽管学习动态图形的顶端表达式( 嵌入 ) 的好处是学习动态图形的顶端表达式( 即嵌入 ), 现有的工作只是将一个动态图形视为顶端连接中的变化序列, 忽略了这种动态的关键的非同步性质, 在这种动态中, 每个本地结构的演变在不同的时间开始, 并且持续不同时期。 为了在图形中保持不同步的结构演变, 我们创新地将动态图形设计成与垂直( ToV) 和边缘时间间隔( ToE) 相连接的时间相连接相关的时间边缘序列。 然后, 提议一个有时间觉的变换器将顶端的动态连接和 ToE 嵌入学习的顶端表达式表达式中。 同时, 我们将每个边缘序列作为一个整体处理, 并嵌入第一个顶端的托维以进一步编码时间敏感信息。 对几个数据集进行的广泛评价显示, 我们的方法在广泛的图形开采任务范围内的状态- 。 同时, 它非常高效和可缩放的图形 。</s>

0
下载
关闭预览

相关内容

专知会员服务
76+阅读 · 2021年3月16日
专知会员服务
123+阅读 · 2020年9月8日
专知会员服务
52+阅读 · 2020年9月7日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
20+阅读 · 2021年9月22日
Arxiv
13+阅读 · 2019年11月14日
Efficiently Embedding Dynamic Knowledge Graphs
Arxiv
14+阅读 · 2019年10月15日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员