Perceiving humans in the context of Intelligent Transportation Systems (ITS) often relies on multiple cameras or expensive LiDAR sensors. In this work, we present a new cost-effective vision-based method that perceives humans' locations in 3D and their body orientation from a single image. We address the challenges related to the ill-posed monocular 3D tasks by proposing a neural network architecture that predicts confidence intervals in contrast to point estimates. Our neural network estimates human 3D body locations and their orientation with a measure of uncertainty. Our proposed solution (i) is privacy-safe, (ii) works with any fixed or moving cameras, and (iii) does not rely on ground plane estimation. We demonstrate the performance of our method with respect to three applications: locating humans in 3D, detecting social interactions, and verifying the compliance of recent safety measures due to the COVID-19 outbreak. We show that it is possible to rethink the concept of "social distancing" as a form of social interaction in contrast to a simple location-based rule. We publicly share the source code towards an open science mission.


翻译:智能运输系统(ITS)背景下的感知人类往往依赖于多摄像头或昂贵的LIDAR传感器。在这项工作中,我们提出了一种新的成本效益高的视觉方法,从单一图像中看待3D中的人的位置及其身体方向。我们通过提出一个神经网络结构来应对与错误的单眼3D任务有关的挑战,该结构预测与点估计不同的信任间隔。我们的神经网络估计人3D身体的位置及其方向,并有一定程度的不确定性。我们提议的解决方案(一)是保密的,(二)与任何固定或移动的相机合作,(三)不依赖地面飞机估计。我们展示了我们三种应用方法的绩效:3D中的人的位置,发现社会互动,核查由于COVID-19爆发而最近安全措施的遵守情况。我们表明,有可能重新思考“社会不和”的概念,作为社会互动的一种形式,与简单的基于地点的规则相对。我们公开分享源代码,以开放科学任务为目的。

0
下载
关闭预览

相关内容

3D是英文“Three Dimensions”的简称,中文是指三维、三个维度、三个坐标,即有长、有宽、有高,换句话说,就是立体的,是相对于只有长和宽的平面(2D)而言。
MonoGRNet:单目3D目标检测的通用框架(TPAMI2021)
专知会员服务
17+阅读 · 2021年5月3日
3D目标检测进展综述
专知会员服务
191+阅读 · 2020年4月24日
跟踪SLAM前沿动态系列之ICCV2019
泡泡机器人SLAM
7+阅读 · 2019年11月23日
【泡泡汇总】CVPR2019 SLAM Paperlist
泡泡机器人SLAM
14+阅读 · 2019年6月12日
无人机视觉挑战赛 | ICCV 2019 Workshop—VisDrone2019
PaperWeekly
7+阅读 · 2019年5月5日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
【泡泡一分钟】LIMO:激光和单目相机融合的视觉里程计
泡泡机器人SLAM
11+阅读 · 2019年1月16日
【泡泡一分钟】基于3D激光雷达地图的立体相机定位
泡泡机器人SLAM
4+阅读 · 2019年1月14日
TCN v2 + 3Dconv 运动信息
CreateAMind
4+阅读 · 2019年1月8日
人工智能 | 国际会议信息6条
Call4Papers
4+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
【泡泡前沿追踪】跟踪SLAM前沿动态系列之IROS2018
泡泡机器人SLAM
29+阅读 · 2018年10月28日
Arxiv
0+阅读 · 2021年5月19日
Monocular Plan View Networks for Autonomous Driving
Arxiv
6+阅读 · 2019年5月16日
Joint Monocular 3D Vehicle Detection and Tracking
Arxiv
8+阅读 · 2018年12月2日
LIMO: Lidar-Monocular Visual Odometry
Arxiv
3+阅读 · 2018年7月19日
VIP会员
相关资讯
跟踪SLAM前沿动态系列之ICCV2019
泡泡机器人SLAM
7+阅读 · 2019年11月23日
【泡泡汇总】CVPR2019 SLAM Paperlist
泡泡机器人SLAM
14+阅读 · 2019年6月12日
无人机视觉挑战赛 | ICCV 2019 Workshop—VisDrone2019
PaperWeekly
7+阅读 · 2019年5月5日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
【泡泡一分钟】LIMO:激光和单目相机融合的视觉里程计
泡泡机器人SLAM
11+阅读 · 2019年1月16日
【泡泡一分钟】基于3D激光雷达地图的立体相机定位
泡泡机器人SLAM
4+阅读 · 2019年1月14日
TCN v2 + 3Dconv 运动信息
CreateAMind
4+阅读 · 2019年1月8日
人工智能 | 国际会议信息6条
Call4Papers
4+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
【泡泡前沿追踪】跟踪SLAM前沿动态系列之IROS2018
泡泡机器人SLAM
29+阅读 · 2018年10月28日
Top
微信扫码咨询专知VIP会员