We present a deterministic algorithm for computing the entire weight distribution of polar codes. As the first step, we derive an efficient recursive procedure to compute the weight distributions that arise in successive cancellation decoding of polar codes along any decoding path. This solves the open problem recently posed by Polyanskaya, Davletshin, and Polyanskii. Using this recursive procedure, we can compute the entire weight distribution of certain polar cosets in time O(n^2). Any polar code can be represented as a disjoint union of such cosets; moreover, this representation extends to polar codes with dynamically frozen bits. This implies that our methods can be also used to compute the weight distribution of polar codes with CRC precoding, of polarization-adjusted convolutional (PAC) codes and, in fact, general linear codes. However, the number of polar cosets in such representation scales exponentially with a parameter introduced herein, which we call the mixing factor. To reduce the exponential complexity of our algorithm, we make use of the fact that polar codes have a large automorphism group, which includes the lower-triangular affine group LTA(m,2). We prove that LTA(m,2) acts transitively on certain sets of monomials, thereby drastically reducing the number of polar cosets we need to evaluate. This complexity reduction makes it possible to compute the weight distribution of any polar code of length up to n=128.


翻译:我们提出了一个计算极地代码全部重量分布的确定性算法。 作为第一步, 我们提出一个高效的循环程序, 以计算在任何解码路径沿任何解码路径连续取消对极代码解码过程中产生的重量分布。 这解决了最近由Polyanskaya、 Davletshin 和 Polanskii 提出的开放问题。 但是, 使用这个递归程序, 我们可以用时间 O (n) 2 来计算某些极性cosets 的全部重量分布。 任何极性代码都可以作为这些 Cose 的脱节组合; 此外, 这个表达方式可以扩展为动态冻结部分的极性代码。 这意味着, 我们的方法也可以用来计算极性代码的重量分布, 与CRC 预编码、 极性调整后革命性革命( PAC) 代码以及事实上的一般线性代码。 然而, 在这种表达比例中, 极性偏重的极性连接数数与这里引入的参数( 我们称之为混合因素) 。 为了降低我们的算法的指数复杂性, 我们使用这个事实, 极性代码有一个大的自动变异性组,,, 也就是我们使用一个大的分数组, 包括 直线性轴的分解的分数组的分数,, 使这个分数的分数组的分数的分数 。

0
下载
关闭预览

相关内容

【AAAI2021】信息瓶颈和有监督表征解耦
专知会员服务
20+阅读 · 2021年1月27日
专知会员服务
45+阅读 · 2020年10月5日
Python分布式计算,171页pdf,Distributed Computing with Python
专知会员服务
107+阅读 · 2020年5月3日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
MIT新书《强化学习与最优控制》
专知会员服务
275+阅读 · 2019年10月9日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
随波逐流:Similarity-Adaptive and Discrete Optimization
我爱读PAMI
5+阅读 · 2018年2月6日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
Arxiv
0+阅读 · 2021年4月7日
VIP会员
相关VIP内容
相关资讯
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
随波逐流:Similarity-Adaptive and Discrete Optimization
我爱读PAMI
5+阅读 · 2018年2月6日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
Top
微信扫码咨询专知VIP会员