Abraham, Dolev, Geffner, and Halpern proved that, in asynchronous systems, a $(k,t)$-robust equilibrium for $n$ players and a trusted mediator can be implemented without the mediator as long as $n > 4(k+t)$, where an equilibrium is $(k,t)$-robust if, roughly speaking, no coalition of $t$ players can decrease the payoff of any of the other players, and no coalition of $k$ players can increase their payoff by deviating. We prove that this bound is tight, in the sense that if $n \le 4(k+t)$ there exist $(k,t)$-robust equilibria with a mediator that cannot be implemented by the players alone. Even though implementing $(k,t)$-robust mediators seems closely related to implementing asynchronous multiparty $(k+t)$-secure computation \cite{BCG93}, to the best of our knowledge there is no known straightforward reduction from one problem to another. Nevertheless, we show that there is a non-trivial reduction from a slightly weaker notion of $(k+t)$-secure computation, which we call $(k+t)$-strict secure computation, to implementing $(k,t)$-robust mediators. We prove the desired lower bound by showing that there are functions on $n$ variables that cannot be $(k+t)$-strictly securely computed if $n \le 4(k+t)$. This also provides a simple alternative proof for the well-known lower bound of $4t+1$ on asynchronous secure computation in the presence of up to $t$ malicious agents.
翻译:Abraham, Dolev, Geffner, and Halpern 证明,在非同步系统中,美元球员和信任的调解人的美元(k)-robust 平衡,只要美元 > 4(k+t) 美元,如果一个平衡是美元(k,t) 美元-robust 美元,如果基本上没有美元球员联盟可以降低其他球员的薪酬,而没有任何美元球员联盟能够通过拆解来增加其报酬。我们证明,这一约束是紧凑的,也就是说,如果美元(k,t) 4(k+t+t) 美元(rbusbust) 美元与调解人的美元(k) 4(k) 美元(t) 美元(k) 美元(t) 美元(t) 美元(cite) 和美元(bek) 美元(t) 美元(t), 美元(tr) 美元(t) 和 美元(n(k) 美元(k) 美元(x(t) 美元(t) 美元(t) 美元(t) 美元(t) 美元(x(t) 美元) 美元(t) 美元(t(t) x(t) 美元) 美元(t(t) 美元) 美元) 美元) 美元(t(t) 美元) 美元(t(t(t(t) x(t) x(t)的计算(t) x(x(x(x(t)的计算(t)的计算(t) 美元)的计算(t) x(t) x(x(t)的计算(x(t)的计算(t) r) r(t) r)的计算(t)不能(t) x(t) x(t) x(t) x(t)的比(t) ral) r) r)不能(t)的计算(t) ral)不能(t) x) x) x(t) x) x) x(t) x(t) x(t(t) x(t) x(t) 美元)