In their fundamental paper on cubic variance functions, Letac and Mora (The Annals of Statistics,1990) presented a systematic, rigorous and comprehensive study of natural exponential families on the real line, their characterization through their variance functions and mean value parameterization. They presented a section that for some reason has been left unnoticed. This section deals with the construction of variance functions associated with natural exponential families of counting distributions on the set of nonnegative integers and allows to find the corresponding generating measures. As exponential dispersion models are based on natural exponential families, we introduce in this paper two new classes of exponential dispersion models based on their results. For these classes, which are associated with simple variance functions, we derive their mean value parameterization and their associated generating measures. We also prove that they have some desirable properties. Both classes are shown to be overdispersed and zero-inflated in ascending order, making them as competitive statistical models for those in use in both, statistical and actuarial modeling. To our best knowledge, the classes of counting distributions we present in this paper, have not been introduced or discussed before in the literature. To show that our classes can serve as competitive statistical models for those in use (e.g., Poisson, Negative binomial), we include a numerical example of real data. In this example, we compare the performance of our classes with relevant competitive models.


翻译:在关于立方差异功能的基本文件中,Letac和Mora(《统计年鉴》,1990年)对实际线上的自然指数型家庭进行了系统、严格和全面的研究,通过差异函数和平均值参数对自然指数型家庭进行了定性,其中一节出于某种原因没有被注意。本节涉及与自然指数型家庭相关的差异函数的构造,即计算非负数整数组的分布,并能够找到相应的生成量。由于指数分散模型以自然指数型家庭为基础,我们在本文件中引入了基于其结果的两种新的指数性分散模型类别。对于与简单的差异函数相关的这些类别,我们得出了它们的平均值参数及其相关的生成量度。我们还证明了它们具有某些可取的属性。这两个类别都显示它们过于分散,在升序中零膨胀,使它们成为统计和精算模型中使用的具有竞争力的统计模型。据我们所知,本文中列出的指数性分布的类别以前没有被引入或讨论过。对于这些类别来说,我们之间的平均值参数及其相关的生成措施。我们还证明它们具有某些可取的特性。两个类别都显示它们具有高度分散性,在上升的统计模型中可以用来作为我们所使用的数字模型。

0
下载
关闭预览

相关内容

ACM/IEEE第23届模型驱动工程语言和系统国际会议,是模型驱动软件和系统工程的首要会议系列,由ACM-SIGSOFT和IEEE-TCSE支持组织。自1998年以来,模型涵盖了建模的各个方面,从语言和方法到工具和应用程序。模特的参加者来自不同的背景,包括研究人员、学者、工程师和工业专业人士。MODELS 2019是一个论坛,参与者可以围绕建模和模型驱动的软件和系统交流前沿研究成果和创新实践经验。今年的版本将为建模社区提供进一步推进建模基础的机会,并在网络物理系统、嵌入式系统、社会技术系统、云计算、大数据、机器学习、安全、开源等新兴领域提出建模的创新应用以及可持续性。 官网链接:http://www.modelsconference.org/
专知会员服务
33+阅读 · 2020年12月28日
多标签学习的新趋势(2020 Survey)
专知会员服务
41+阅读 · 2020年12月6日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
【机器学习术语宝典】机器学习中英文术语表
专知会员服务
59+阅读 · 2020年7月12日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
ICLR2019最佳论文出炉
专知
12+阅读 · 2019年5月6日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
【推荐】免费书(草稿):数据科学的数学基础
机器学习研究会
20+阅读 · 2017年10月1日
【推荐】决策树/随机森林深入解析
机器学习研究会
5+阅读 · 2017年9月21日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年3月30日
Arxiv
0+阅读 · 2021年3月29日
VIP会员
相关VIP内容
专知会员服务
33+阅读 · 2020年12月28日
多标签学习的新趋势(2020 Survey)
专知会员服务
41+阅读 · 2020年12月6日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
【机器学习术语宝典】机器学习中英文术语表
专知会员服务
59+阅读 · 2020年7月12日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
ICLR2019最佳论文出炉
专知
12+阅读 · 2019年5月6日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
【推荐】免费书(草稿):数据科学的数学基础
机器学习研究会
20+阅读 · 2017年10月1日
【推荐】决策树/随机森林深入解析
机器学习研究会
5+阅读 · 2017年9月21日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员