Interventional causal models describe joint distributions over some variables used to describe a system, one for each intervention setting. They provide a formal recipe for how to move between joint distributions and make predictions about the variables upon intervening on the system. Yet, it is difficult to formalise how we may change the underlying variables used to describe the system, say from fine-grained to coarse-grained variables. Here, we argue that compositionality is a desideratum for model transformations and the associated errors. We develop a framework for model transformations and abstractions with a notion of error that is compositional: when abstracting a reference model M modularly, first obtaining M' and then further simplifying that to obtain M'', then the composite transformation from M to M'' exists and its error can be bounded by the errors incurred by each individual transformation step. Category theory, the study of mathematical objects via the compositional transformations between them, offers a natural language for developing our framework. We introduce a category of finite interventional causal models and, leveraging theory of enriched categories, prove that our framework enjoys the desired compositionality properties.
翻译:干预因果模型描述用于描述一个系统的一些变量的共同分布, 一种针对每个干预设置的变量。 它们为如何在联合分布之间移动和在系统干预时对变量作出预测提供了一个正式的配方。 然而, 很难正式确定我们如何改变用于描述系统的基本变量, 从细微的变数到粗微的变数。 这里, 我们争辩说, 组合性是模型转换和相关错误的分流。 我们为模型转换和抽象设计了一个框架, 其错误概念是构成性的: 当抽取一个参考模型M模块化模型时, 先是获得M, 然后进一步简化获得M的变异, 然后是M到M的复合变异, 其错误可以被每个单个变异变步骤发生的错误所束缚。 分类理论, 通过它们之间的组合变异性来研究数学对象, 提供了开发我们框架的自然语言。 我们引入了一种有限的干预因果模型, 并且利用丰富类别的理论, 证明我们的框架享有理想的构成特性。