In this paper, we propose a novel algorithm, termed Subspace Phase Retrieval (SPR), which can accurately recover any $n$-dimensional $k$-sparse signal from $\mathcal O(k\log n)$ magnitude-only Gaussian samples. This offers a significant improvement over some existing results that require $\mathcal O(k^2 \log n)$ samples. We also present a geometrical analysis for a subproblem, where we recover the sparse signal given that at least one support index of this signal is identified already. It is shown that with high probability, $\mathcal O(k\log k)$ magnitude-only Gaussian samples ensure i) that all local minima of our objective function are clustered around the expected global minimum within arbitrarily small distances, and ii) that all critical points outside of this region have at least one negative curvature. When the input signal is nonsparse (i.e., $k = n$), our result indicates an analogous geometric property with $\mathcal O(n \log n)$ samples. This affirmatively answers the open question by Sun-Qu-Wright [1].
翻译:在本文中, 我们提议了一个小算法, 叫做 Subspace 相位检索val (SPR), 它可以准确地从 $\ mathcal O( k\log n) 和 $gissian 样本中收回任何 美元- 美元- 美元- 美元- 美元- 美元- 美元- 星等信号。 这大大改进了某些现有的结果, 这些结果需要$\ mathcal O( k\ log n) 和 美元( k\ log n) 的样本。 我们还对子问题进行几何等分析, 因为至少已经确定了该信号的一个支持指数, 我们在此情况下恢复了稀少的信号。 事实证明, 以高概率, $\ mathcal O( k\ log k) 的 度( k) 美元- 只有 高斯 样本可以确保 i) 我们目标功能的所有本地微量值都集中在任意小距离内预期的全球最低值上, 。 并且这个区域外的所有临界点至少有一个负曲线。 当输入信号不精确( $k = n) ) 时, 我们的结果显示一个与 以 Sun\\\\\ math- pray quest Q.