Large-scale weakly supervised product retrieval is a practically useful yet computationally challenging problem. This paper introduces a novel solution for the eBay Visual Search Challenge (eProduct) held at the Ninth Workshop on Fine-Grained Visual Categorisation workshop (FGVC9) of CVPR 2022. This competition presents two challenges: (a) E-commerce is a drastically fine-grained domain including many products with subtle visual differences; (b) A lacking of target instance-level labels for model training, with only coarse category labels and product titles available. To overcome these obstacles, we formulate a strong solution by a set of dedicated designs: (a) Instead of using text training data directly, we mine thousands of pseudo-attributes from product titles and use them as the ground truths for multi-label classification. (b) We incorporate several strong backbones with advanced training recipes for more discriminative representation learning. (c) We further introduce a number of post-processing techniques including whitening, re-ranking and model ensemble for retrieval enhancement. By achieving 71.53% MAR, our solution "Involution King" achieves the second position on the leaderboard.
翻译:大规模监督薄弱的产品回收是一个实际有用、但具有计算挑战性的问题。本文介绍了在CVPR 2022年CVPR 第九次精美视觉分类讲习班(FGVC9)上举行的eBay视觉搜索挑战(eBay View Search Challenge)(eBay Product)(e)的新解决办法。这一竞争提出了两个挑战:(a) 电子商务是一个极其细微的细微领域,包括许多具有细微视觉差异的产品;(b) 模型培训缺乏目标实例级标签,只有粗劣的类别标签和产品标题。为了克服这些障碍,我们通过一套专门设计,制定了一个强有力的解决办法:(a) 我们不直接使用文本培训数据,而是从产品标题中开采数千个假成的成品,并把它们用作多标签分类的地面真象。 (b) 我们把几个强大的骨架与高级培训配有更具有歧视代表性的教学方法结合起来。 (c) 我们进一步引入一些后处理技术,包括白化、重新排级和用于检索强化的模型。通过达到71.53% MAR,我们的解决方案“革命国王”在板上达到了第二位。