The fundamental question considered in algorithms on strings is that of indexing, that is, preprocessing a given string for specific queries. By now we have a number of efficient solutions for this problem when the queries ask for an exact occurrence of a given pattern $P$. However, practical applications motivate the necessity of considering more complex queries, for example concerning near occurrences of two patterns. Recently, Bille et al. [CPM 2021] introduced a variant of such queries, called gapped consecutive occurrences, in which a query consists of two patterns $P_{1}$ and $P_{2}$ and a range $[a,b]$, and one must find all consecutive occurrences $(q_1,q_2)$ of $P_{1}$ and $P_{2}$ such that $q_2-q_1 \in [a,b]$. By their results, we cannot hope for a very efficient indexing structure for such queries, even if $a=0$ is fixed (although at the same time they provided a non-trivial upper bound). Motivated by this, we focus on a text given as a straight-line program (SLP) and design an index taking space polynomial in the size of the grammar that answers such queries in time optimal up to polylog factors.


翻译:摘要:算法在字符串中的基本问题是索引,即针对特定查询预处理给定的字符串。到目前为止,当查询要求给定模式 $P$ 的确切出现时,我们已经有了一些有效的解决方案。然而,实际应用中,考虑更复杂的查询是必要的,例如涉及两种模式的近似出现情况。最近,Bille等人 [CPM 2021] 引入了这种查询的变体,称为间隙连续出现,其中查询由两个模式 $P_{1}$ 和 $P_{2}$ 和一个范围 $[a,b]$ 组成,必须找到所有满足 $q_2-q_1 \in [a,b]$ 的 $P_{1}$ 和 $P_{2}$ 的连续出现 $(q_1,q_2)$。根据他们的结果,即使 $a=0$ 固定不变,我们也不能指望对这种查询非常有效的索引结构(尽管同时他们提供了一个非平凡的上界)。受此启发,我们专注于以直线程序(SLP)形式给出的文本,并设计了一个索引结构,其空间复杂度为语法大小的多项式,以最优的时间复杂度回答这种查询,直到多项式对数因子。

0
下载
关闭预览

相关内容

【数据科学导论书】Introduction to Datascience,253页pdf
专知会员服务
48+阅读 · 2021年11月15日
最新《图神经网络知识图谱补全》综述论文
专知会员服务
155+阅读 · 2020年7月29日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
已删除
将门创投
13+阅读 · 2019年4月17日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
利用动态深度学习预测金融时间序列基于Python
量化投资与机器学习
18+阅读 · 2018年10月30日
LibRec 精选:推荐的可解释性[综述]
LibRec智能推荐
10+阅读 · 2018年5月4日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2023年5月25日
Arxiv
0+阅读 · 2023年5月25日
Arxiv
0+阅读 · 2023年5月23日
Arxiv
11+阅读 · 2021年12月8日
Memory-Gated Recurrent Networks
Arxiv
12+阅读 · 2020年12月24日
Do RNN and LSTM have Long Memory?
Arxiv
19+阅读 · 2020年6月10日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
已删除
将门创投
13+阅读 · 2019年4月17日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
利用动态深度学习预测金融时间序列基于Python
量化投资与机器学习
18+阅读 · 2018年10月30日
LibRec 精选:推荐的可解释性[综述]
LibRec智能推荐
10+阅读 · 2018年5月4日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
相关论文
Arxiv
0+阅读 · 2023年5月25日
Arxiv
0+阅读 · 2023年5月25日
Arxiv
0+阅读 · 2023年5月23日
Arxiv
11+阅读 · 2021年12月8日
Memory-Gated Recurrent Networks
Arxiv
12+阅读 · 2020年12月24日
Do RNN and LSTM have Long Memory?
Arxiv
19+阅读 · 2020年6月10日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员