Geometry-based point cloud compression (G-PCC) can achieve remarkable compression efficiency for point clouds. However, it still leads to serious attribute compression artifacts, especially under low bitrate scenarios. In this paper, we propose a Multi-Scale Graph Attention Network (MS-GAT) to remove the artifacts of point cloud attributes compressed by G-PCC. We first construct a graph based on point cloud geometry coordinates and then use the Chebyshev graph convolutions to extract features of point cloud attributes. Considering that one point may be correlated with points both near and far away from it, we propose a multi-scale scheme to capture the short and long range correlations between the current point and its neighboring and distant points. To address the problem that various points may have different degrees of artifacts caused by adaptive quantization, we introduce the quantization step per point as an extra input to the proposed network. We also incorporate a graph attentional layer into the network to pay special attention to the points with more attribute artifacts. To the best of our knowledge, this is the first attribute artifacts removal method for G-PCC. We validate the effectiveness of our method over various point clouds. Experimental results show that our proposed method achieves an average of 9.28% BD-rate reduction. In addition, our approach achieves some performance improvements for the downstream point cloud semantic segmentation task.


翻译:以几何为基础的点云压缩( G- PCC) 能够实现点云的显著压缩效率 。 但是, 它仍然会导致严重的属性压缩工艺品, 特别是在低位速假设情景下 。 在本文件中, 我们提议建立一个多比例图形关注网络( MS- GAT), 以清除由 G- PCC 压缩的点云属性的文物。 我们首先根据点云几何坐标构建一个图表, 然后使用 Chebyshev 图形组合来提取点云属性的特征。 考虑到一个点可能与点相近和远处的点相关, 我们提议了一个多比例方案, 以捕捉当前点及其相邻点和远点之间的短期和长期关联关系。 为了解决不同点因适应性四分化而导致的点天体艺术文物属性问题, 我们引入了每个点的四分位化步骤, 作为拟议网络的额外投入。 我们还在网络中加入一个图形关注层, 以便特别关注点与更多属性文物。 根据我们的知识, 我们提出一个多级计划, 这是第一个属性清除G- PC 28 的首个属性清除方法 。 我们验证了某种平流法在降低 方法上的结果 。

0
下载
关闭预览

相关内容

根据激光测量原理得到的点云,包括三维坐标(XYZ)和激光反射强度(Intensity)。 根据摄影测量原理得到的点云,包括三维坐标(XYZ)和颜色信息(RGB)。 结合激光测量和摄影测量原理得到点云,包括三维坐标(XYZ)、激光反射强度(Intensity)和颜色信息(RGB)。 在获取物体表面每个采样点的空间坐标后,得到的是一个点的集合,称之为“点云”(Point Cloud)
【AAAI2022】锚点DETR:基于transformer检测器的查询设计
专知会员服务
12+阅读 · 2021年12月31日
【CVPR2021】基于端到端预训练的视觉-语言表征学习
专知会员服务
37+阅读 · 2021年4月9日
专知会员服务
20+阅读 · 2021年4月2日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
已删除
将门创投
3+阅读 · 2018年3月13日
A Graph Auto-Encoder for Attributed Network Embedding
Arxiv
12+阅读 · 2019年1月24日
A Compact Embedding for Facial Expression Similarity
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
已删除
将门创投
3+阅读 · 2018年3月13日
Top
微信扫码咨询专知VIP会员