Dyslexia in adults remains an under-researched and under-served area, particularly in non-English-speaking contexts, despite its significant impact on personal and professional lives. This work addresses that gap by focusing on Sinhala, a low-resource language with limited tools for linguistic accessibility. We present an assistive system explicitly designed for Sinhala-speaking adults with dyslexia. The system integrates Whisper for speech-to-text conversion, SinBERT, an open-sourced fine-tuned BERT model trained for Sinhala to identify common dyslexic errors, and a combined mT5 and Mistral-based model to generate corrected text. Finally, the output is converted back to speech using gTTS, creating a complete multimodal feedback loop. Despite the challenges posed by limited Sinhala-language datasets, the system achieves 0.66 transcription accuracy and 0.7 correction accuracy with 0.65 overall system accuracy. These results demonstrate both the feasibility and effectiveness of the approach. Ultimately, this work highlights the importance of inclusive Natural Language Processing (NLP) technologies in underrepresented languages and showcases a practical
翻译:暂无翻译