This paper presents a Keyword-driven and N-gram Graph based approach for Image Captioning (KENGIC). Most current state-of-the-art image caption generators are trained end-to-end on large scale paired image-caption datasets which are very laborious and expensive to collect. Such models are limited in terms of their explainability and their applicability across different domains. To address these limitations, a simple model based on N-Gram graphs which does not require any end-to-end training on paired image captions is proposed. Starting with a set of image keywords considered as nodes, the generator is designed to form a directed graph by connecting these nodes through overlapping n-grams as found in a given text corpus. The model then infers the caption by maximising the most probable n-gram sequences from the constructed graph. To analyse the use and choice of keywords in context of this approach, this study analysed the generation of image captions based on (a) keywords extracted from gold standard captions and (b) from automatically detected keywords. Both quantitative and qualitative analyses demonstrated the effectiveness of KENGIC. The performance achieved is very close to that of current state-of-the-art image caption generators that are trained in the unpaired setting. The analysis of this approach could also shed light on the generation process behind current top performing caption generators trained in the paired setting, and in addition, provide insights on the limitations of the current most widely used evaluation metrics in automatic image captioning.


翻译:本文展示了一个基于 Keyword 驱动和 Ngram 图的图像描述工具( KENGIC ) 。 多数当前最先进的图像字幕生成器都是经过培训的, 以大型配对图像描述数据集为主端对端, 这些数据集非常劳累, 收集费用很高。 这些模型在解释性和在不同领域适用性方面受到限制。 为解决这些局限性, 提议了一个基于 N- Gram 图形的简单模型, 不需要对配对图像标题进行任何端对端培训。 从一组被视为节点的图像关键字开始, 生成器设计成一个定向图表, 通过在给定的文本库中找到的重叠的 ngram 将这些节点连接起来。 模型然后通过将构建图中最可能的 ngram 序列最大化来推断这些数据集。 为了分析这些关键字的用法的使用和选择, 本研究分析了基于 (a) 从黄金标准标题中提取的关键字和(b) 自动检测到的近端关键字, 生成器的设计设计器的设计设计设计设计设计设计设计图的当前正向背后的当前图像分析, 运行中最精度分析中最精细的模型的当前智能分析, 也可以在目前智能分析中完成中完成的当前发动机的流程中,, 进行最精确的流程,, 进行最精确的对正向后演练的流程的流程的演练的演制的演制的演制,,,,,, 的演的演的演的演的演的演的演的演的演进的演进的演进。

0
下载
关闭预览

相关内容

图像字幕(Image Captioning),是指从图像生成文本描述的过程,主要根据图像中物体和物体的动作。
NeurlPS 2022 | 自然语言处理相关论文分类整理
专知会员服务
48+阅读 · 2022年10月2日
【2022新书】高效深度学习,Efficient Deep Learning Book
专知会员服务
117+阅读 · 2022年4月21日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
征稿 | CFP:Special Issue of NLP and KG(JCR Q2,IF2.67)
开放知识图谱
1+阅读 · 2022年4月4日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
1+阅读 · 2023年3月28日
Arxiv
15+阅读 · 2021年7月14日
Exploring Visual Relationship for Image Captioning
Arxiv
14+阅读 · 2018年9月19日
Arxiv
21+阅读 · 2018年5月23日
Arxiv
11+阅读 · 2018年5月13日
VIP会员
相关基金
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员