In this contribution we propose an optimally stable ultraweak Petrov-Galerkin variational formulation and subsequent discretization for stationary reactive transport problems. The discretization is exclusively based on the choice of discrete approximate test spaces, while the trial space is a priori infinite dimensional. The solution in the trial space or even only functional evaluations of the solution are obtained in a post-processing step. We detail the theoretical framework and demonstrate its usage in a numerical experiment that is motivated from modeling of catalytic filters.
翻译:在这篇文章中,我们提出了一种优化稳定的超弱Petrov-Galerkin变分形式及其离散化方法,可以用于稳态反应传输问题。该离散化方法完全基于离散近似测试空间的选择,同时试验空间是预先定义的无穷维空间。在后加工步骤中,可以计算出解在试验空间中的数值或其它相关的函數。我们详细介绍了理论框架,并在一个由催化过滤器建模的数值实验中展示了其应用。