In aphasia research, Speech-Language Pathologists (SLPs) devote extensive time to manually coding speech samples using Correct Information Units (CIUs), a measure of how informative an individual sample of speech is. Developing automated systems to recognize aphasic language is limited by data scarcity. For example, only about 600 transcripts are available in AphasiaBank yet billions of tokens are used to train large language models (LLMs). In the broader field of machine learning (ML), researchers increasingly turn to synthetic data when such are sparse. Therefore, this study constructs and validates two methods to generate synthetic transcripts of the AphasiaBank Cat Rescue picture description task. One method leverages a procedural programming approach while the second uses Mistral 7b Instruct and Llama 3.1 8b Instruct LLMs. The methods generate transcripts across four severity levels (Mild, Moderate, Severe, Very Severe) through word dropping, filler insertion, and paraphasia substitution. Overall, we found, compared to human-elicited transcripts, Mistral 7b Instruct best captures key aspects of linguistic degradation observed in aphasia, showing realistic directional changes in NDW, word count, and word length amongst the synthetic generation methods. Based on the results, future work should plan to create a larger dataset, fine-tune models for better aphasic representation, and have SLPs assess the realism and usefulness of the synthetic transcripts.
 翻译:暂无翻译