We consider the following list coloring with separation problem: Given a graph $G$ and integers $a,b$, find the largest integer $c$ such that for any list assignment $L$ of $G$ with $|L(v)|= a$ for any vertex $v$ and $|L(u)\cap L(v)|\le c$ for any edge $uv$ of $G$, there exists an assignment $\varphi$ of sets of integers to the vertices of $G$ such that $\varphi(u)\subset L(u)$ and $|\varphi(v)|=b$ for any vertex $u$ and $\varphi(u)\cap \varphi(v)=\emptyset$ for any edge $uv$. Such a value of $c$ is called the separation number of $(G,a,b)$. Using a special partition of a set of lists for which we obtain an improved version of Poincar\'e's crible, we determine the separation number of the complete graph $K_n$ for some values of $a,b$ and $n$, and prove bounds for the remaining values.
翻译:我们考虑下列列表,其中列出与分离问题有关的颜色问题:根据一张G$和整数a,b美元,找到最大的整数c美元,因此,对于任何列表分配,任何顶点美元为$L(v) +美元,任何顶点美元为$L(v) +美元,任何边点为$L(u)\cap L(v)\cap L(cap)c$,任何边点为$+5美元,任何边点为$L(v)\cap L(v)\cap L(cap)cap L(cap)(美元)cap L(v)\cap L(v)\cap L(cap)cap L(cap)cap L(cap)(美元)美元,任何边点为$(g) +G,a(b) 美元。使用一套特别分配清单,我们获得一套改进版的Poincar(u) L(u) subrefle L(v) $) 和 {varphi(vremeal $) $),我们确定完整的图表的分离号数,其余值为$和美元。