A family of $k$ point sets in $d$ dimensions is well-separated if the convex hulls of any two disjoint subfamilies can be separated by a hyperplane. Well-separation is a strong assumption that allows us to conclude that certain kinds of generalized ham-sandwich cuts for the point sets exist. But how hard is it to check if a given family of high-dimensional point sets has this property? Starting from this question, we study several algorithmic aspects of the existence of transversals and separations in high-dimensions. First, we give an explicit proof that $k$ point sets are well-separated if and only if their convex hulls admit no $(k - 2)$-transversal, i.e., if there exists no $(k - 2)$-dimensional flat that intersects the convex hulls of all $k$ sets. It follows that the task of checking well-separation lies in the complexity class coNP. Next, we show that it is NP-hard to decide whether there is a hyperplane-transversal (that is, a $(d - 1)$-transversal) of a family of $d + 1$ line segments in $\mathbb{R}^d$, where $d$ is part of the input. As a consequence, it follows that the general problem of testing well-separation is coNP-complete. Furthermore, we show that finding a hyperplane that maximizes the number of intersected sets is NP-hard, but allows for an $\Omega\left(\frac{\log k}{k \log \log k}\right)$-approximation algorithm that is polynomial in $d$ and $k$, when each set consists of a single point. When all point sets are finite, we show that checking whether there exists a $(k - 2)$-transversal is in fact strongly NP-complete.
翻译:以 $d 维度计的 $ knock 组合 。 从这个问题开始, 我们研究两个互不连接的次家庭 的 comvex 圆形 美元 的 美元 。 首先, 我们明确证明 $ 美元 的 美元 的 美元, 如果它们的 折叠 美元 - 2 美元 - 透明, 也就是说, 如果没有 $ - 2 美元 的 通用的 hamandwich 削减, 那么要检查高维点 的 个家庭 是否拥有这个属性有多难? 从这个问题开始, 我们研究 存在 跨端 和 高平流 的 美元 的 。 首先, 我们明确证明 美元 美元 的 点是, 如果 美元 美元 的 平流的 值, 则显示 美元 的 。