Turbulent flow consists of structures with a wide range of spatial and temporal scales which are hard to resolve numerically. Classical numerical methods as the Large Eddy Simulation (LES) are able to capture fine details of turbulent structures but come at high computational cost. Applying generative adversarial networks (GAN) for the synthetic modeling of turbulence is a mathematically well-founded approach to overcome this issue. In this work, we investigate the generalization capabilites of GAN-based synthetic turbulence generators when geometrical changes occur in the flow configuration (e.g. aerodynamic geometric optimization of structures such as airfoils). As training data, we use the flow around a low-pressure turbine (LPT) stator with periodic wake impact obtained from highly resolved LES. To simulate the flow around a LPT stator, we use the conditional deep convolutional GAN framework pix2pixHD conditioned on the position of a rotating wake in front of the stator. For the generalization experiments we exclude images of wake positions located at certain regions from the training data and use the unseen data for testing. We show the abilities and limits of generalization for the conditional GAN by extending the regions of the extracted wake positions successively. Finally, we evaluate the statistical properties of the synthesized flow field by comparison with the corresponding LES results.


翻译:脉冲流由各种空间和时间尺度结构组成,这些结构在数量上难以解决。大型水底模拟(LES)等典型数字方法能够捕捉动荡结构的细细细节,但计算成本很高。为气流合成模型应用基因对抗网络(GAN)是数学上有充分依据的一种方法来克服这一问题。在这项工作中,我们调查流结构发生几何变化时以GAN为基础的合成气流生成器的通用稳定度(例如空气动力学结构如空气油等结构的几何优化)。作为培训数据,我们使用低压涡轮机(LPT)塔的流,其周期性影响来自高度解析的LES。模拟流动的基因对抗网络(GAN),我们使用有条件的深电动GAN框架pix2pixHD, 其条件是在电流结构发生几何变化时的旋转后的位置。关于某些区域后退位置的图像,我们从培训数据中排除,并且使用从远解的LES数据库中生成的数据,我们通过连续的统计结果来评估总流的能力和总流结果。

0
下载
关闭预览

相关内容

专知会员服务
45+阅读 · 2020年10月31日
【干货书】真实机器学习,264页pdf,Real-World Machine Learning
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
国家自然科学基金
1+阅读 · 2016年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
On the Possibilities of AI-Generated Text Detection
Arxiv
0+阅读 · 2023年4月10日
Arxiv
23+阅读 · 2022年2月4日
Arxiv
11+阅读 · 2018年3月23日
VIP会员
相关基金
国家自然科学基金
1+阅读 · 2016年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员