We establish the local asymptotic normality (LAN) property for estimating a multidimensional parameter in the drift of a system of $N$ interacting particles observed over a fixed time horizon in a mean-field regime $N \rightarrow \infty$. By implementing the classical theory of Ibragimov and Hasminski, we obtain in particular sharp results for the maximum likelihood estimator that go beyond its simple asymptotic normality thanks to H\'ajek's convolution theorem and strong controls of the likelihood process that yield asymptotic minimax optimality (up to constants). Our structural results shed some light to the accompanying nonlinear McKean-Vlasov experiment, and enable us to derive simple and explicit criteria to obtain identifiability and non-degeneracy of the Fisher information matrix. These conditions are also of interest for other recent studies on the topic of parametric inference for interacting diffusions.
翻译:我们建立了局部无症状常态(LAN)属性,以估计在中野制度下在固定时间范围内观测到的以美元为单位的同步粒子系统漂移的多维参数。我们通过实施Ibragimov和Hasminski的经典理论,特别为最大可能性的估测器取得了惊人的结果,该估测器超越了简单的无症状常态,因为H\'ajek的同源词变异和对产生无症状最小度优化(直至常数)的可能性过程的有力控制。我们的结构结果为伴随的非线性麦肯-弗拉索夫实验提供了一些线索,并使我们能够为获得渔业信息矩阵的可识别性和不减损性制定简单和明确的标准。这些条件对于最近关于交互扩散的参数参数的参数的其他研究也是有意义的。