项目名称: 基于字典学习和测量矩阵优化的SAR图像目标识别方法研究

项目编号: No.61301211

项目类型: 青年科学基金项目

立项/批准年度: 2014

项目学科: 无线电电子学、电信技术

项目作者: 王彩云

作者单位: 南京航空航天大学

项目金额: 24万元

中文摘要: 传统合成孔径雷达目标识别方法受限于特征提取和计算度复杂。本课题拟在压缩感知理论框架下,以SAR稀疏信号压缩测量及目标分类识别为主线,研究SAR图像在不同变换字典下的稀疏特性、图像降维压缩自适应过完备字典的构造、图像稀疏近邻表示字典构造、压缩采样匹配追踪方法、非参数贝叶斯自适应稀疏分解方法、测量矩阵优化模型、随机测量矩阵优化设计方法、确定性测量矩阵的优化设计方法,SAR ATR的实验验证分析。研究旨在克服雷达目标识别方法对特征提取敏感性,形成基于自适应压缩感知SAR ATR理论与方法。利用优化理论、现代智能信息处理技术,发展SAR图像降维、稀疏表示方法和快速收敛的自适应稀疏求解算法,以及测量矩阵优化设计方法。基于字典学习的自适应过完备字典构造和测量矩阵的优化设计能够实现对图像稀疏表示,并在稀疏分解后用于目标分类识别。研究成果有望形成对于我国新型雷达目标识别系统的研制和改进的关键技术支撑。

中文关键词: SAR图像;稀疏表征;雷达目标识别;压缩感知;

英文摘要: Traditional Synthetic Aperture Radar (SAR) target recognition method is limited by feature extraction and computing complexity. Topic proposed in the framework of compressed sensing theory to SAR sparse signal compression measurement and target recognition. Study on the sparse characteristics of SAR images in different transformation dictionary, sparse matrix modeling, including dimensional compression adaptive over-complete dictionary for image degradation, adaptive over-complete dictionary for image sparse nearest neighbor representation, Compressive sampling matching pursuit method, nonparametric Bayesian adaptive sparse decomposition method, measurement matrix optimization modeling, structured random matrix optimization design method, the uncertainty measurement matrix optimization design method, and the experiment analysis of SAR ATR. Study aims to overcome the radar target recognition method of feature extraction sensitivity, and form a SAR ATR theory and method based on adaptive compressed sensing. Using optimization theory and modern intelligent information processing technology, we develop the SAR image dimension reduction, sparse representation method, the fast convergence of the adaptive sparse decomposition algorithm, and the measurement matrix optimization design method. Based on a dictionary learni

英文关键词: SAR image;Sparse representation;Radar target recognitioon;Compressed sensin;

成为VIP会员查看完整内容
1

相关内容

专知会员服务
28+阅读 · 2021年9月6日
专知会员服务
43+阅读 · 2021年8月30日
专知会员服务
27+阅读 · 2021年8月24日
专知会员服务
32+阅读 · 2021年7月26日
专知会员服务
72+阅读 · 2021年3月23日
专知会员服务
62+阅读 · 2021年3月6日
无参考图像质量评价研究进展
专知会员服务
31+阅读 · 2021年2月14日
专知会员服务
34+阅读 · 2021年2月7日
专知会员服务
19+阅读 · 2020年12月23日
专知会员服务
79+阅读 · 2020年12月6日
基于深度学习的图像目标检测算法综述
专知
2+阅读 · 2022年4月16日
综述:图像滤波常用算法实现及原理解析
极市平台
0+阅读 · 2022年1月29日
光学遥感图像目标检测算法综述
专知
8+阅读 · 2021年3月23日
【学界】DeepMind论文:深度压缩感知,新框架提升GAN性能
GAN生成式对抗网络
14+阅读 · 2019年5月23日
目标跟踪算法分类
算法与数据结构
20+阅读 · 2018年9月28日
基于二进制哈希编码快速学习的快速图像检索
极市平台
12+阅读 · 2018年5月17日
深度学习的快速目标跟踪
AI研习社
13+阅读 · 2018年1月8日
深度图像先验:无需学习即可生成新图像
论智
45+阅读 · 2017年12月4日
红外弱小目标处理研究获进展
中科院之声
17+阅读 · 2017年11月19日
SAR成像原理及图像鉴赏
无人机
21+阅读 · 2017年8月14日
国家自然科学基金
2+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
0+阅读 · 2022年4月19日
Arxiv
0+阅读 · 2022年4月19日
Arxiv
26+阅读 · 2018年8月19日
小贴士
相关VIP内容
专知会员服务
28+阅读 · 2021年9月6日
专知会员服务
43+阅读 · 2021年8月30日
专知会员服务
27+阅读 · 2021年8月24日
专知会员服务
32+阅读 · 2021年7月26日
专知会员服务
72+阅读 · 2021年3月23日
专知会员服务
62+阅读 · 2021年3月6日
无参考图像质量评价研究进展
专知会员服务
31+阅读 · 2021年2月14日
专知会员服务
34+阅读 · 2021年2月7日
专知会员服务
19+阅读 · 2020年12月23日
专知会员服务
79+阅读 · 2020年12月6日
相关资讯
基于深度学习的图像目标检测算法综述
专知
2+阅读 · 2022年4月16日
综述:图像滤波常用算法实现及原理解析
极市平台
0+阅读 · 2022年1月29日
光学遥感图像目标检测算法综述
专知
8+阅读 · 2021年3月23日
【学界】DeepMind论文:深度压缩感知,新框架提升GAN性能
GAN生成式对抗网络
14+阅读 · 2019年5月23日
目标跟踪算法分类
算法与数据结构
20+阅读 · 2018年9月28日
基于二进制哈希编码快速学习的快速图像检索
极市平台
12+阅读 · 2018年5月17日
深度学习的快速目标跟踪
AI研习社
13+阅读 · 2018年1月8日
深度图像先验:无需学习即可生成新图像
论智
45+阅读 · 2017年12月4日
红外弱小目标处理研究获进展
中科院之声
17+阅读 · 2017年11月19日
SAR成像原理及图像鉴赏
无人机
21+阅读 · 2017年8月14日
相关基金
国家自然科学基金
2+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
微信扫码咨询专知VIP会员