Due to the diverse sparsity, high dimensionality, and large temporal variation of dynamic point clouds, it remains a challenge to design an efficient point cloud compression method. We propose to code the geometry of a given point cloud by learning a neural volumetric field. Instead of representing the entire point cloud using a single overfit network, we divide the entire space into small cubes and represent each non-empty cube by a neural network and an input latent code. The network is shared among all the cubes in a single frame or multiple frames, to exploit the spatial and temporal redundancy. The neural field representation of the point cloud includes the network parameters and all the latent codes, which are generated by using back-propagation over the network parameters and its input. By considering the entropy of the network parameters and the latent codes as well as the distortion between the original and reconstructed cubes in the loss function, we derive a rate-distortion (R-D) optimal representation. Experimental results show that the proposed coding scheme achieves superior R-D performances compared to the octree-based G-PCC, especially when applied to multiple frames of a point cloud video. The code is available at https://github.com/huzi96/NVFPCC/.
翻译:由于动态点云的广度、高维度和巨大的时间变化,设计高效点云压缩方法仍是一项挑战。我们提议通过学习神经体积场,对特定点云的几何进行校正。我们提议通过学习神经体积场,对特定点云进行校正。我们不使用单一的超适应网络代表整个点云,而是将整个空间分成一个小立方体,通过神经网络和输入潜伏代码代表每个非空立方体。网络由单一框架或多个框架的所有立方体共享,以利用空间和时间冗余。点云的神经场显示包括网络参数和所有潜在代码,这些参数和代码是通过对网络参数及其输入进行回映生成的。我们通过考虑网络参数和潜在代码的宏图案以及损失函数中原始和重塑的立方体之间的扭曲,我们得出一个率扭曲(R-D)最佳表达方式。实验结果显示,与基于octree G-PCC相比,特别是当应用多框架时,可应用到 MAC/NFS/RFA。