Front-end electronics equipped with high-speed digitizers are being used and proposed for future nuclear detectors. Recent literature reveals that deep learning models, especially one-dimensional convolutional neural networks, are promising when dealing with digital signals from nuclear detectors. Simulations and experiments demonstrate the satisfactory accuracy and additional benefits of neural networks in this area. However, specific hardware accelerating such models for online operations still needs to be studied. In this work, we introduce PulseDL-II, a system-on-chip (SoC) specially designed for applications of event feature (time, energy, etc.) extraction from pulses with deep learning. Based on the previous version, PulseDL-II incorporates a RISC CPU into the system structure for better functional flexibility and integrity. The neural network accelerator in the SoC adopts a three-level (arithmetic unit, processing element, neural network) hierarchical architecture and facilitates parameter optimization of the digital design. Furthermore, we devise a quantization scheme compatible with deep learning frameworks (e.g., TensorFlow) within a selected subset of layer types. We validate the correct operations of PulseDL-II on field programmable gate arrays (FPGA) alone and with an experimental setup comprising a direct digital synthesis (DDS) and analog-to-digital converters (ADC). The proposed system achieved 60 ps time resolution and 0.40% energy resolution at signal to noise ratio (SNR) of 47.4 dB.
翻译:最新文献显示,在处理核探测器的数字信号时,深层学习模型,特别是一维进化神经网络,很有希望。模拟和实验表明,神经网络在这一领域的准确性和额外效益令人满意。然而,仍然需要研究为在线操作加速这种模型的具体硬件。在这项工作中,我们引入了PulseDL-II,一个专门为应用具有深层学习的脉冲从脉冲中提取(时间、能量等)而设计的系统-芯片(SoC)。基于以前的版本,PulseDL-II将一个RISC CPU纳入系统结构,以提高功能灵活性和完整性。但是,SOC的神经网络加速器采用了三级(电离子单元、处理元素、神经网络)等级结构,并便利数字设计的参数优化。此外,我们设计了一个与深度学习框架(例如,TensorFlow)兼容的孔化方案。在选定的60号SDR4的平流式S平流系统(S)中,在单个的SDDFA级平流流流解(S)中,在单个的平流解的平流流流流流流化的S-平流解操作中,我们对地设置了S-SDDFA-C-S-S-S-S-C-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-直流平流平流的平流的平流的平流的平流的平流的平流平流的平流的平流的平流的平流图图。