Singular-Value Decomposition (SVD) is a ubiquitous data analysis method in engineering, science, and statistics. Singular-value estimation, in particular, is of critical importance in an array of engineering applications, such as channel estimation in communication systems, electromyography signal analysis, and image compression, to name just a few. Conventional SVD of a data matrix coincides with standard Principal-Component Analysis (PCA). The L2-norm (sum of squared values) formulation of PCA promotes peripheral data points and, thus, makes PCA sensitive against outliers. Naturally, SVD inherits this outlier sensitivity. In this work, we present a novel robust non-parametric method for SVD and singular-value estimation based on a L1-norm (sum of absolute values) formulation, which we name L1-cSVD. Accordingly, the proposed method demonstrates sturdy resistance against outliers and can facilitate more reliable data analysis and processing in a wide range of engineering applications.
翻译:单价分解(SVD)是一种在工程、科学和统计方面无处不在的数据分析方法。 单值估算尤其对一系列工程应用至关重要,例如通信系统中的频道估测、电传信号分析和图像压缩,仅举几例。 数据矩阵中的常规SVD与标准的主元元分解分析(PCA)相吻合。 五氯苯甲醚的L2-norm(平方值总和)配方促进了外围数据点的形成,从而使五氯苯甲醚对外部点具有敏感性。自然,SVD继承了这一外部敏感度。在这项工作中,我们提出了一种新的非参数性方法,用于SVD和基于L1-norm(绝对值总和)配方的单值估算,我们称之为L1-cVD。 因此,拟议方法显示了对外部点的抗力,有助于在广泛的工程应用中进行更可靠的数据分析和处理。