Motivated by better modeling of intra-individual variability in longitudinal data, we propose a class of location-scale mixed effects models, in which the data of each individual is modeled by a parameter-varying generalized hyperbolic distribution. We first study the local maximum-likelihood asymptotics and reveal the instability in the numerical optimization of the log-likelihood. Then, we construct an asymptotically efficient estimator based on the Newton-Raphson method based on the original log-likelihood function with the initial estimator being naive least-squares-type. Numerical experiments are conducted to show that the proposed one-step estimator is not only theoretically efficient but also numerically much more stable and much less time-consuming compared with the maximum-likelihood estimator.
翻译:为了更好地模拟纵向数据的个体内部变异性,我们建议了一组位置尺度混合效应模型,其中每个人的数据都以参数分布式的通用超曲线分布模型为模型。我们首先研究本地最大相似性无症状,并揭示日志相似性数字优化的不稳定性。然后,我们根据原日志相似性功能,根据牛顿-拉夫森方法,建立一个无症状效率的测算器,最初的测算器是天性最小方形的天性测算器。进行了数值实验,以表明拟议的一阶测算器不仅在理论上有效,而且在数字上更加稳定,而且比最大相似性测算器要少得多。