Domain generation algorithm (DGA) is used by botnets to build a stealthy command and control (C&C) communication channel between the C&C server and the bots. A DGA can periodically produce a large number of pseudo-random algorithmically generated domains (AGDs). AGD detection algorithms provide a lightweight, promising solution in response to the existing DGA techniques. In this paper, a GCNN (gated convolutional neural network)-LSTM (long short-term memory) Hybrid Neural Network (GLHNN) for AGD detection is proposed. In GLHNN, GCNN is applied to extract the informative features from domain names on top of LSTM which further processes the feature sequence. GLHNN is experimentally validated using representative AGDs covering six classes of DGAs. GLHNN is compared with the state-of-the-art detection models and demonstrates the best overall detection performance among these tested models.
翻译:机器人网络利用域生成算法(DGA)建立C&C服务器与机器人之间的隐性指挥和控制通信频道(C&C),DGA可定期生成大量假随机生成域(AGDs),根据现有的DGA技术,GD检测算法提供了一种轻量、有希望的解决方案。本文建议用GCNN(变幻神经网络)-LSTM(长期内存)混合神经网络(GLHNN)来检测AGD。在GLHNNN(GLHNN)中,GNN用于从LSTM顶端域名中提取信息功能,以进一步处理特征序列。GLHNN是使用代表的AGDS(代表AGD)进行实验性验证的,涵盖DGAS的六类。GNNN(GLHNN)与最先进的探测模型进行了比较,并展示了这些测试模型中的最佳总体探测性能。