Graph neural networks (GNNs) have achieved great success in many graph-based applications. However, the enormous size and high sparsity level of graphs hinder their applications under industrial scenarios. Although some scalable GNNs are proposed for large-scale graphs, they adopt a fixed $K$-hop neighborhood for each node, thus facing the over-smoothing issue when adopting large propagation depths for nodes within sparse regions. To tackle the above issue, we propose a new GNN architecture -- Graph Attention Multi-Layer Perceptron (GAMLP), which can capture the underlying correlations between different scales of graph knowledge. We have deployed GAMLP in Tencent with the Angel platform, and we further evaluate GAMLP on both real-world datasets and large-scale industrial datasets. Extensive experiments on these 14 graph datasets demonstrate that GAMLP achieves state-of-the-art performance while enjoying high scalability and efficiency. Specifically, it outperforms GAT by 1.3\% regarding predictive accuracy on our large-scale Tencent Video dataset while achieving up to $50\times$ training speedup. Besides, it ranks top-1 on both the leaderboards of the largest homogeneous and heterogeneous graph (i.e., ogbn-papers100M and ogbn-mag) of Open Graph Benchmark.
翻译:在许多基于图形的应用程序中,图形神经网络(GNNS)取得了巨大的成功,然而,巨大的大小和高宽度水平的图形阻碍了在工业情景下的应用。虽然为大型图形提议了一些可扩缩的GNNS,但每个节点都采用固定的$K$-hop 区区块,因此,在对稀疏区域内的节点采用大型传播深度时,面临过度移动的问题。为了解决上述问题,我们提议一个新的GNN结构 -- -- 图形关注多功能 Percepron(GAMLP),它可以捕捉不同图表知识尺度之间的内在关联性关系。我们与天使平台一起在Tentententent部署了GAMLP,我们进一步评估了现实世界数据集和大型工业数据集中的GAMLP。在这14个图表数据集上的广泛实验表明,GMLP在享有高度可缩放率和效率的同时,取得了最先进的业绩。具体来说,它比GATGAT高出1.3。我们在大型摄像数据集上的预测性精确度精确度。我们在天使平台上部署了GMMMLP-100美元最高级和最高正标级的平级。