A novel finite element formulation for gradient-regularized damage models is presented which allows for the robust, efficient, and mesh-independent simulation of damage phenomena in engineering and biological materials. The paper presents a Lagrange multiplier based mixed finite element formulation for finite strains. Thereby, no numerical stabilization or penalty parameters are required. On the other hand, no additional degrees of freedom appear for the Lagrange multiplier which is achieved through a suitable FE-interpolation scheme allowing for static condensation. In contrast to competitive approaches from the literature with similar efficiency, the proposed formulation does not require cross-element information and thus, a straightforward implementation using standard element routine interfaces is enabled. Numerical tests show mesh-independent solutions, robustness of the solution procedure for states of severe damage and under cyclic loading conditions. It is demonstrated that the computing time of the gradient damage calculations exceeds the one of purely elastic computations only by an insignificant amount. Furthermore, an improved convergence behavior compared to alternative approaches is shown.
翻译:对梯度固定损害模型提出了一种新的限定要素配方,允许对工程材料和生物材料的损害现象进行稳健、高效和视网目独立的模拟。本文介绍了基于有限菌株的拉格兰倍增效应混合有限要素配方。因此,不需要数字稳定或惩罚参数。另一方面,对于拉格兰梯乘方而言,似乎没有额外的自由度,而拉格兰加方程式是通过允许静态凝聚的适当的FE内插办法实现的。与具有类似效率的文献中竞争性办法相反,拟议的配方不需要交叉要素信息,因此,可以使用标准元素常规界面直接实施。数字测试显示的是视网目独立的解决方案、严重损害状态和周期加载条件下的解决方案的稳健性。事实表明,梯度损害计算计算计算的时间仅比纯弹性计算的时间小于一个微量的计算。此外,与替代方法相比,出现了更好的趋同行为。