We show that using nearest neighbours in the latent space of autoencoders (AE) significantly improves performance of semi-supervised novelty detection in both single and multi-class contexts. Autoencoding methods detect novelty by learning to differentiate between the non-novel training class(es) and all other unseen classes. Our method harnesses a combination of the reconstructions of the nearest neighbours and the latent-neighbour distances of a given input's latent representation. We demonstrate that our nearest-latent-neighbours (NLN) algorithm is memory and time efficient, does not require significant data augmentation, nor is reliant on pre-trained networks. Furthermore, we show that the NLN-algorithm is easily applicable to multiple datasets without modification. Additionally, the proposed algorithm is agnostic to autoencoder architecture and reconstruction error method. We validate our method across several standard datasets for a variety of different autoencoding architectures such as vanilla, adversarial and variational autoencoders using either reconstruction, residual or feature consistent losses. The results show that the NLN algorithm grants up to a 17% increase in Area Under the Receiver Operating Characteristics (AUROC) curve performance for the multi-class case and 8% for single-class novelty detection.
翻译:我们显示,在自动读数器(AE)潜伏空间使用近邻可明显提高半监督新发现在单级和多级环境中的性能。自动编码方法通过学习区分非新颖培训班和所有其他不为人知的班级而发现新颖。我们的方法利用了近邻重建的组合,以及某个输入潜表层的潜居距离。我们证明,我们最接近的远邻国算法(NLNN)具有记忆和时间效率,不需要显著的数据增强,也不依赖预先培训的网络。此外,我们显示NLN-algoorithm很容易不加修改地适用于多个数据集。此外,拟议的算法对离近邻国的重建以及某个输入潜潜潜伏代表体的相近邻距离相结合。我们验证了我们使用重建、残存或连续损失的不同自动编码结构(Vanilla、对抗和变形自动解调自动解码结构)的多种方法。结果显示,NLNNN-algoithmal-algalationalationsationsal 很容易适用于多级系统化系统(NLAral-Ralal-Cal-Revorma)在17级的运行中,运行中,运行中,运行中,用于17号自动递增。