Computer vision enables the development of new approaches to monitor the behavior, health, and welfare of animals. Instance segmentation is a high-precision method in computer vision for detecting individual animals of interest. This method can be used for in-depth analysis of animals, such as examining their subtle interactive behaviors, from videos and images. However, existing deep-learning-based instance segmentation methods have been mostly developed based on public datasets, which largely omit heavy occlusion problems; therefore, these methods have limitations in real-world applications involving object occlusions, such as farrowing pen systems used on pig farms in which the farrowing crates often impede the sow and piglets. In this paper, we propose a novel occlusion-resistant Center Clustering Network for instance segmentation, dubbed as CClusnet-Inseg. Specifically, CClusnet-Inseg uses each pixel to predict object centers and trace these centers to form masks based on clustering results, which consists of a network for segmentation and center offset vector map, Density-Based Spatial Clustering of Applications with Noise (DBSCAN) algorithm, Centers-to-Mask (C2M) and Remain-Centers-to-Mask (RC2M) algorithms, and a pseudo-occlusion generator (POG). In all, 4,600 images were extracted from six videos collected from six farrowing pens to train and validate our method. CClusnet-Inseg achieves a mean average precision (mAP) of 83.6; it outperformed YOLACT++ and Mask R-CNN, which had mAP values of 81.2 and 74.7, respectively. We conduct comprehensive ablation studies to demonstrate the advantages and effectiveness of core modules of our method. In addition, we apply CClusnet-Inseg to multi-object tracking for animal monitoring, and the predicted object center that is a conjunct output could serve as an occlusion-resistant representation of the location of an object.
翻译:计算机视觉可以开发新的方法来监测动物的行为、健康和福利。 在计算机视觉中, 时间分割是一种高精确度的方法, 用于检测感兴趣的动物。 这个方法可用于深入分析动物, 例如通过视频和图像来检查它们微妙的互动行为。 但是, 现有的基于深学习的实例分割方法大多是在公共数据集的基础上开发的, 这些数据集基本上省略了严重的封闭问题; 因此, 这些方法在现实世界应用中, 包括对象隐蔽的应用程序中存在局限性, 例如在猪场中使用的远精确度笔系统, 其中, 拖动的箱常常阻碍播种和猪圈。 在本文中, 我们提议一种新型的封闭性中心集成网络, 被称为CClunet- Inseg 。 具体来说, CClunet- Inseg 使用每个像素来预测对象中心, 并追踪这些中心在集群结果上形成面具, 包括我们平均分解和中位矢量图的网络, Densic- bascial Cloverial Croupation 以及应用的Neal- mal- demal- dal- dal- dal- disal- dal- dal- dismal- disalsaldaldaldals, laxs, 和Mal- sildal- sildal- laxal- sildal- sildal- sildal- sildals- sildal- sildal- sildal- sildal- sal- sildaldaldaldaldaldaldaldaldaldaldaldaldals, 和Ms) 和Ms- sals- saldalds- saldaldaldaldaldaldalsss, 和s sals saldaldaldaldalss 和smaldaldaldaldals 和s 和s 和s 和Mal- 和Ms-s-s- sal-s-s- sal- saldaldaldaldaldalsals,, 和Ms-s-mas- mas