We present near-optimal algorithms for detecting small vertex cuts in the CONGEST model of distributed computing. Despite extensive research in this area, our understanding of the vertex connectivity of a graph is still incomplete, especially in the distributed setting. To this date, all distributed algorithms for detecting cut vertices suffer from an inherent dependency in the maximum degree of the graph, $\Delta$. Hence, in particular, there is no truly sub-linear time algorithm for this problem, not even for detecting a single cut vertex. We take a new algorithmic approach for vertex connectivity which allows us to bypass the existing $\Delta$ barrier. As a warm-up to our approach, we show a simple $\widetilde{O}(D)$-round randomized algorithm for computing all cut vertices in a $D$-diameter $n$-vertex graph. This improves upon the $O(D+\Delta/\log n)$-round algorithm of [Pritchard and Thurimella, ICALP 2008]. Our key technical contribution is an $\widetilde{O}(D)$-round randomized algorithm for computing all cut pairs in the graph, improving upon the state-of-the-art $O(\Delta \cdot D)^4$-round algorithm by [Parter, DISC '19]. Note that even for the considerably simpler setting of edge cuts, currently $\widetilde{O}(D)$-round algorithms are known only for detecting pairs of cut edges. Our approach is based on employing the well-known linear graph sketching technique [Ahn, Guha and McGregor, SODA 2012] along with the heavy-light tree decomposition of [Sleator and Tarjan, STOC 1981]. Combining this with a careful characterization of the survivable subgraphs, allows us to determine the connectivity of $G \setminus \{x,y\}$ for every pair $x,y \in V$, using $\widetilde{O}(D)$-rounds. We believe that the tools provided in this paper are useful for omitting the $\Delta$-dependency even for larger cut values.


翻译:我们提出接近最佳的算法, 用于检测2012 年的 CONGEST 分布式计算模型中的小脊椎切除值。 尽管我们在这方面进行了广泛的研究, 我们对图表的脊椎连接性仍不完整, 特别是在分布式设置中。 到这个日期, 所有用于检测切脊椎的分布式算法都有内在的依附性。 因此, 这个问题没有真正的亚线性时间算法, 甚至不是用于检测一个单切断的顶端。 我们对顶端连接的新算法, 使我们能够绕过现有的 $\ Delta 的脊椎连接性连接性, 特别是在分布式设置一个简单的 $\ D- 美元 美元 美元 。 用于计算所有脊椎的 美元 美元 美元 美元 美元 美元 。 用于 以 美元 ( D\ delta/\ log n ) 的 直线性算算法, 以更清晰的 美元 。

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
Python分布式计算,171页pdf,Distributed Computing with Python
专知会员服务
107+阅读 · 2020年5月3日
专知会员服务
159+阅读 · 2020年1月16日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
52+阅读 · 2019年9月29日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium7
中国图象图形学学会CSIG
0+阅读 · 2021年11月15日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
9+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
VIP会员
相关VIP内容
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
Python分布式计算,171页pdf,Distributed Computing with Python
专知会员服务
107+阅读 · 2020年5月3日
专知会员服务
159+阅读 · 2020年1月16日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
52+阅读 · 2019年9月29日
相关资讯
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium7
中国图象图形学学会CSIG
0+阅读 · 2021年11月15日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
相关基金
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
9+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员