In federated learning (FL), it is commonly assumed that all data are placed at clients in the beginning of machine learning (ML) optimization (i.e., offline learning). However, in many real-world applications, it is expected to proceed in an online fashion. To this end, online FL (OFL) has been introduced, which aims at learning a sequence of global models from decentralized streaming data such that the so-called cumulative regret is minimized. Combining online gradient descent and model averaging, in this framework, FedOGD is constructed as the counterpart of FedSGD in FL. While it can enjoy an optimal sublinear regret, FedOGD suffers from heavy communication costs. In this paper, we present a communication-efficient method (named OFedIQ) by means of intermittent transmission (enabled by client subsampling and periodic transmission) and quantization. For the first time, we derive the regret bound that captures the impact of data-heterogeneity and the communication-efficient techniques. Through this, we efficiently optimize the parameters of OFedIQ such as sampling rate, transmission period, and quantization levels. Also, it is proved that the optimized OFedIQ can asymptotically achieve the performance of FedOGD while reducing the communication costs by 99%. Via experiments with real datasets, we demonstrate the effectiveness of the optimized OFedIQ.


翻译:在联谊学习(FL)中,通常假定所有数据都放在机器学习(ML)优化(即离线学习)开始时的客户手中(即离线学习),然而,在许多现实世界应用程序中,预计数据会以在线方式进行。为此,引入了在线FL(OFL),目的是从分散流数据中学习一系列全球模型,从而尽量减少所谓的累积遗憾。在这个框架中,将在线梯度下降和平均模型合并成FDSGD的对应方。FedOGD可以享有最佳的子线性遗憾,而FedOGD却承受着沉重的通信成本。在本文中,我们通过间歇性传输(客户子集和定期传输)和四分解的方式介绍了一种通信高效的方法(名为OFL(OFL ) 。我们第一次发现,遗憾的是,通过收集数据高度和通信效率技术的影响,FedOGD(FDQ)的抽样率、传输期和平流率测试,我们实现了最佳的通信水平。此外,我们通过FDOFS的优化的绩效可以证明,我们实现了最佳的绩效。

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
【2022新书】高效深度学习,Efficient Deep Learning Book
专知会员服务
117+阅读 · 2022年4月21日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
3+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2023年3月9日
Meta-Transfer Learning for Zero-Shot Super-Resolution
Arxiv
43+阅读 · 2020年2月27日
VIP会员
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
相关基金
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
3+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员