In this paper, we show several parameterized problems to be complete for the class XNLP: parameterized problems that can be solved with a non-deterministic algorithm that uses $f(k)\log n$ space and $f(k)n^c$ time, with $f$ a computable function, $n$ the input size, $k$ the parameter and $c$ a constant. The problems include Maximum Regular Induced Subgraph and Max Cut parameterized by linear clique-width, Capacitated (Red-Blue) Dominating Set parameterized by pathwidth, Odd Cycle Transversal parameterized by a new parameter we call logarithmic linear clique-width (defined as $k/\log n$ for an $n$-vertex graph of linear clique-width $k$), and Bipartite Bandwidth.
翻译:在本文中,我们为XNLP类展示了几个需要完成的参数化问题:可以用非确定性算法解决的参数化问题,该算法使用美元(k)\log n$空间和美元(k)n ⁇ c$时间,一个可计算函数为美元,输入大小为美元,参数为美元,参数为美元,恒定值为美元。问题包括:以线性微线线形线形宽化的最大常规引导子谱和最大截断参数,以路径宽化、奇特周期跨轨道参数为参数,由我们称为对数线线线性圆形-线性线性线性线性线性线性线性线性线性线性线性线性线性线性线性线性线性线性线性线性线性线性线性线参数(定义为美元/克/克美元,以美元为美元,以美元为美元为美元,以美元为美元为美元),以及Bipartite Bandwith。