The discriminator of an integer sequence $\textbf{s} = (s(i))_{i \geq 0}$, introduced by Arnold, Benkoski, and McCabe in 1985, is the function $D_{\textbf{s}} (n)$ that sends $n$ to the least integer $m$ such that the numbers $s(0), s(1), \ldots, s(n - 1)$ are pairwise incongruent modulo $m$. In this note, we explore the quadratic sequences whose discriminator is given by $p^{\lceil \log_p n \rceil}$ for prime $p$, i.e., the smallest power of $p$ which is $\geq n$. We provide a complete characterization of such sequences for $p = 2$, show that this is impossible for $p \geq 5$, and provide some partial results for $p = 3$.
翻译:由 Arnold, Benkoski 和 McCabe 于1985年推出的整数序列 $\ textbf{s} = (s(i) )\ i\ geq 0}$, 由 Arnold, Benkoski 和 McCabe 于1985年推出的, 是向最低整数的美元发送n美元(n) 的函数 $D\ textbf{s} (n) $0 美元, 使美元= 0. 1, s (n) = 1, 数字为 $0, s(1), eldots, s (n) = 1, = 0. 美元, = 0. 0. 美元, = 0. 0. 美元, = 0. 0. = 0. 美元, = 0. = 0. 0. 0. = 0. = 0. 1 美元, 我们探索了这些二次序列的分数序列。