A confidence sequence (CS) is an anytime-valid sequential inference primitive which produces an adapted sequence of sets for a predictable parameter sequence with a time-uniform coverage guarantee. This work constructs a non-parametric non-asymptotic lower CS for the running average conditional expectation whose slack converges to zero given non-negative right heavy-tailed observations with bounded mean. Specifically, when the variance is finite the approach dominates the empirical Bernstein supermartingale of Howard et. al.; with infinite variance, can adapt to a known or unknown $(1 + \delta)$-th moment bound; and can be efficiently approximated using a sublinear number of sufficient statistics. In certain cases this lower CS can be converted into a closed-interval CS whose width converges to zero, e.g., any bounded realization, or post contextual-bandit inference with bounded rewards and unbounded importance weights. A reference implementation and example simulations demonstrate the technique.
翻译:信任序列( CS) 是一个随时有效的序列顺序推导原始, 产生一个经过调整的序列序列序列, 用于可预测的参数序列, 且有时间统一覆盖的保证。 这项工作为运行中的平均有条件期望构建了一个非参数非参数性低的 CS, 运行中的平均有条件期望, 其松懈会合为零, 给非负右下方的重尾观察加上约束平均值。 具体地说, 当差异是有限的时, 这种方法在Howard 等人的经验性Bernstein 超边界中占主导地位; 有无限的差异, 能够适应已知或未知的美元(1 +\ delta) 0.th 分钟约束; 并且可以使用一个亚线性数量的充足统计数据有效估计。 在某些情况下, 低的 CS 可以转换为封闭式 CS, 宽度接近零, 例如, 任何约束值的实现, 或背景带带约束的推论和无约束重的重量。 参考实施和示例模拟演示了该技术 。