Quantile forecasts made across multiple horizons have become an important output of many financial institutions, central banks and international organisations. This paper proposes misspecification tests for such quantile forecasts that assess optimality over a set of multiple forecast horizons and/or quantiles. The tests build on multiple Mincer-Zarnowitz quantile regressions cast in a moment equality framework. Our main test is for the null hypothesis of autocalibration, a concept which assesses optimality with respect to the information contained in the forecasts themselves. We provide an extension that allows to test for optimality with respect to larger information sets and a multivariate extension. Importantly, our tests do not just inform about general violations of optimality, but may also provide useful insights into specific forms of sub-optimality. A simulation study investigates the finite sample performance of our tests, and two empirical applications to financial returns and U.S. macroeconomic series illustrate that our tests can yield interesting insights into quantile forecast sub-optimality and its causes.
翻译:跨多个地平线的量化预测已成为许多金融机构、中央银行和国际组织的重要产出。本文件建议对评估一套多预报地平面和/或孔平面的最佳度的定量预测进行错误的量测。 测试以在一个时空平等框架内推出的多重微量- 扎诺威茨微量回归为基础。 我们的主要测试是自动校准的无效假设, 这个概念评估了预测本身所含信息的最佳性。 我们提供了一个扩展, 从而可以测试较大信息组和多变量扩展的优化性。 重要的是, 我们的测试不仅能说明一般的最佳度违反情况,而且还能提供对亚最佳度具体形式的有用洞见。 模拟研究调查了我们测试的有限样品性能,以及两个对金融回报和美国宏观经济系列的经验性应用表明,我们的测试可以产生对微量预测亚最佳度及其原因的有趣洞察力。