Short-term disease forecasting at specific discrete spatial resolutions has become a high-impact decision-support tool in health planning. However, when the number of areas is very large obtaining predictions can be computationally intensive or even unfeasible using standard spatio-temporal models. The purpose of this paper is to provide a method for short-term predictions in high-dimensional areal data based on a newly proposed ``divide-and-conquer" approach. We assess the predictive performance of this method and other classical spatio-temporal models in a validation study that uses cancer mortality data for the 7907 municipalities of continental Spain. The new proposal outperforms traditional models in terms of mean absolute error, root mean square error and interval score when forecasting cancer mortality one, two and three years ahead. Models are implemented in a fully Bayesian framework using the well-known integrated nested Laplace (INLA) estimation technique.
翻译:短期疾病预测在特定离散空间分辨率下已成为卫生规划中的高影响力决策支持工具。然而,当区域数量非常大时,使用标准的时空模型获得预测可能会需要很高的计算代价,甚至是不可行的。本文的目的是提供一种基于新提出的“分而治之”方法的高维面积数据短期预测方法。我们使用西班牙大陆的7907个市镇的癌症死亡率数据进行验证研究,评估了该方法和其他经典时空模型的预测性能。新的提议在预测癌症死亡率一年、两年和三年之后方面优于传统模型,表现出较小的平均绝对误差、均方根误差和区间打分。模型使用著名的集成嵌套Laplace(INLA)估计技术在完全贝叶斯框架中实现。