This paper introduces a notation of $\varepsilon$-weakened robustness for analyzing the reliability and stability of deep neural networks (DNNs). Unlike the conventional robustness, which focuses on the "perfect" safe region in the absence of adversarial examples, $\varepsilon$-weakened robustness focuses on the region where the proportion of adversarial examples is bounded by user-specified $\varepsilon$. Smaller $\varepsilon$ means a smaller chance of failure. Under such robustness definition, we can give conclusive results for the regions where conventional robustness ignores. We prove that the $\varepsilon$-weakened robustness decision problem is PP-complete and give a statistical decision algorithm with user-controllable error bound. Furthermore, we derive an algorithm to find the maximum $\varepsilon$-weakened robustness radius. The time complexity of our algorithms is polynomial in the dimension and size of the network. So, they are scalable to large real-world networks. Besides, We also show its potential application in analyzing quality issues.


翻译:本文为分析深神经网络(DNNS)的可靠性和稳定性,引入了美元和瓦列普西隆元的强化强力。与传统强力(在没有对抗实例的情况下侧重于“完美”安全区域)不同的是,美元和瓦列普西隆元的增强强力(treaked strongity)侧重于由用户指定的美元和瓦列普西隆美元约束的对抗性实例比例比例的区域。较小的美元和瓦列普西隆元意味着较小的失败机会。在这种强力定义下,我们可以为传统强力忽略的区域提供决定性结果。我们证明,美元和瓦列普斯隆元的强化强力决定问题是PP-完整的,并给出了带有用户控制错误约束的统计决策算法。此外,我们还得出一种算法,以找到美元和瓦列普西隆元之间最大强度的强力半径。我们的算法在网络的尺寸和大小上是多度的。因此,这些算法可以适用于大型真实世界网络。此外,我们还展示了它在质量问题上的应用潜力。

0
下载
关闭预览

相关内容

专知会员服务
44+阅读 · 2020年10月31日
MIT-深度学习Deep Learning State of the Art in 2020,87页ppt
专知会员服务
61+阅读 · 2020年2月17日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【计算机类】期刊专刊/国际会议截稿信息6条
Call4Papers
3+阅读 · 2017年10月13日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
【推荐】TensorFlow手把手CNN实践指南
机器学习研究会
5+阅读 · 2017年8月17日
Arxiv
0+阅读 · 2021年12月31日
Arxiv
0+阅读 · 2021年12月30日
Arxiv
30+阅读 · 2021年7月7日
Arxiv
37+阅读 · 2021年2月10日
Arxiv
4+阅读 · 2017年1月2日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【计算机类】期刊专刊/国际会议截稿信息6条
Call4Papers
3+阅读 · 2017年10月13日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
【推荐】TensorFlow手把手CNN实践指南
机器学习研究会
5+阅读 · 2017年8月17日
相关论文
Arxiv
0+阅读 · 2021年12月31日
Arxiv
0+阅读 · 2021年12月30日
Arxiv
30+阅读 · 2021年7月7日
Arxiv
37+阅读 · 2021年2月10日
Arxiv
4+阅读 · 2017年1月2日
Top
微信扫码咨询专知VIP会员